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QJNfHAL INTRU U.iali

The project entitled "On the relationship bef .jeern transitinnal and

r,>ii y !,urbul eni. shear flrw" i4 nr;ern , wi 1 v r . a ; ar ta of '.,r .Is

2C(*plex process.

Research is carried out simultanenusly in a wind tunnel where tran-

sition of a laminar boundary layer, Is extensively investigated, in a

pipe;, and most recently, a large two dimenional chanuel facility was

added. The ability to compare data obtainci in different geometries,

Reynolds numbers, and pressure gradietits enab'es us to take nrivantage of

!he uni que properties of each facil ity :md h.iv in ,verwiew of the univ-

trsal aspects of the problem.

For example: transitinn in a boundary layer takes place in a form

of "spot" bounded on one side only, by a solid surface. The spots, thus

grow spatially In all three directions forming cnmplicated three di-

mensional structures. The pressure gradient over the surface is easily

controlled and may be made to vanish on a flat plate at no incidence,

yet there Is no control over the growth rf' the Reynolds number and the

local thickness of' the boundary layer. In a pipe, on the other hand, a

transitlonal turbulent structure "a puff" is limited by the diameter of'

the pipe and can only grow in the streamwise direction, the Reynolds

number Is easily controlled by controlling tne mass flux but the pres-

sure gradient in a given pipe at a fixed fie depends on the s ructure of

lie flow, and Is thus a dependent variable. Althugh the
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,_nsoritible-averaged Ure UleIt structuire 41 trani 3 oJ al pipe f'low is axi-

'ymmnk rc, thert. :-, lit! l evidence that thli3 i.i a dornnant mode of the

trans'.toln prricess. The two dimensional channel facility was construct-

I. t( .iusu V pr',v des a link hctw .-en !he b,,rijd;try layer and 1te [)lpe

t 1:,w. AII hough I i. :'luut gr;t(I ent in a -tanrtc I i a i dependent varn-

able the transio iial structure may takte a form f.I a boundary-layer-spot

tf gcnerated locally by a polnt-snurce-disturbance, or a "puff" (or

"siug") if generated by a two dimensional disturbance spanning the chan-

el. However, even three dimensional dl sturhan.es set, in channeI-flw

can nnly propagate 2n two directions thus theocretical and experimental

analysls of the pronlem is simpler' then inl 1,het: ti- ,iary layer.

The resulting turbulent flow In pipes, ,-hannel; and boundary layers

-s of course quite similar. The viscnus amu I ayer, the Iogarithmtc

law-of-tne-wall, the mean turbulent intensities and even the wall-

streaks and large coherent structures are all alike. This 'mplies that

only those features which are common toi all go.retries are of paramunV

importance in tie final transit {on proces.aj. The overall research pro-

gram (n transition at the School of' Engneerng in Tel- Aviv was guided

by this view. During the CY 19b-19b1 wrV was done on the internal

structure of the boundary layer spot (--me of the experiments were car-

r ,ed out. at the University of Southern Callforni a); on the interaction

of spt a and on the effects of favrable pressure grad ient on spots. In

pipe flow, the axisymmetric mode of transition was investigated by mak-

ing 6 simultaneous measurements at, different A' r.lmut haI locations, but,

the bulk of" this years 3cientific report is conccrnd wi.h the pulsai.ing



pipe flow. The introduction of' harmonic pulsations to pipu Flow was

proposced by us in 1972 but was not executed because (if xperlmen1.al dif-

fzcLUlties and a lack of an adequate data acquisition 3 ystem. The pro-

r'uwas reestab i 1shed in 1978 aftur the relat i -:t.;k pI t) ' put't C, rAnt

w;t3 under stood (R8ub in, Harl toni dl .3 and Wyrm~,1 980; In t, he

&t tached thesi s by L. Shemer, pulsating Liminar andi turbulent pipe

fionis are discussed in detail. The response of the system which con-

11 r3 a plenum chamber, a piston puImp and a pipe tr. co)ntrolled siniosoi-

dloscillations was investigated, as was the effect of' the finite volo-

city of sound on the propagation of disturbances in a long pipe. There

are marked differences between the structure ()t 1,urbulence in a pulsat-

ng p~p 11 v low and in "st eady" fully develo)pt.d turbulent flow, these

ki~r'ne are associated with the memory ofLh itcribalen

al po)i1nt1 again to thf; need of cons3idering relaxation time In modeling

turbulent flows. A portion of the thesis, concterned wi th thv differ-

ca'3butween laminar arid turbulent puls atintg 1'lows and the mo)deling of'

relaxation times using complex variables to deno'e,, phatse relations:hips,

wil be presented at the 1981 Davis conference on 1.urbulent shear flows.

J I oc t s ofI ha rmoi i tc pulI z~a L t (Ins on ru laI na r I /,t Ioi n ofC t urbulI ent flow

and on transition to turbulencu will be considered during the coming

year CY 61-82.



ON THE SUBSTRUCTURE IN A TRANSIrIONAL SPOT

By i. Wygnanski

Department of Fluid Mechanics and Heat Transfer

School of Engineering
Tel-Aviv University.



1) INTRQDUCTIUN

Photographs of transitional boundary layer sp,,ts (Gad el Hak

Blackwelder and Riley (1980), Cantwell, Coles and Dimotak. s (1978) and

Matsui (1980)) reveal that the spot contains numerou3 eddies. In fact

at sufficiently high Reynolds number, the Interior of the spot is indis-

tinguishable visually from the fully devel. ped turbulent boundary layer.

Longitudinal streaks aligned roughly with the direction of streaming

figure prominently in every plan-view photograph of the sp-t and the

boundary layer. Yet, the subtruct.ure within I,,L; sprot can not o cur en-

tirely at random in view of the univrsality of the shape of the spot,

and its linear growth in the spanwise and streamwise directions.

Ensemble avaraged data, conditioned on the pertutbation generating

the spot, does not reveal a dam-inant structure wtthin the spot itself

(Wygnanki, Sokolov and Friedman (1976), Cantwell, Coles and Dimotakis

(1978)). Consecutive spots may uiffer slightly freom one to anether i:

their shape and their celerity which results in desynchronization f to:

acquisition process and masks the internal structure deduced fron the

averoged data. Thus the velocity field reconstructed from ensem=ble

averaged data would lead one to believe that the spot consists of 3 sin-

gle large coherent eddy. The apparent eddy, however, does not scale

correctly with any characteristic boundary layer lrQ' h-sciie becaus,!

the spot can becomes as large as the facility in which It is generateti.
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Although the overall dynamics of the spot is o)f' ome pract ical interest

as it may help in predicting skin friction, hteat transfer and nuolse gen-

erated in the transition region, it can hardly evplain the dynamics of

the transition process itself.

It was previously observed (Wygnanski, iarltonlidis and Kaplan 191

that a wave packet trails the spot. The precise relationship between

the packet and the spot is not fully understond, particularly at low Re-

ynnlds numbers, but on numerous occasion ! he; wave packet oroke, dowrn

generating a new transitional spot which, at least initially, did not

mannge to catch-up with the parent structure. The breakdown of a wave

packet into structures resembling hair-pin eddies suggests that. the spot

may contain a fai rly orderly array of such ,,dd !(:3. inc i p ei'. Lpo, s in

favorable pressure gradient (Wygnanski 1960) contained initially three,

then five distinctive eddies arranged in a A firmation. The number of

these eddies increased for a whil k wit h d"own:. r(I.jm 'i st anu , but, I,1 e"

they merged to become indistingulshable Further dLwnstrcam-3 13 a result

(-f the averaging process.

Thus in order to map the structure of a "typical" spot more sopnis-

ticated averaging techniques have to he employed, in the following dis-

cussion few attempts are made to pry the ir1forimat.lon from streamwise

velocity measurements made with a normal hot-wire rake whicn supplies

Instanteneous velocity information across t.he ,cut iro bnundary layer.

Measurements were made in the absance of" pressure gradient at a



Page 3

f ree stream velocity of 5m/sec and a perturbation located at. he ='0

1xised on the local displacement thickness of the laminar boundary layer.

Th. experimental facility, the instrum(Lfiltatinn and thie datai acquisi tioni

system were discussed previously ( Wygnan ski , Ila Y- I.on" di s ind Kaplzin

971)) and will not, be repeated in the presen! -n ext,

2) ON THE~ LONGITUDNA' STUTR

An example of 10 simultaneous, strcaimwl !se, velocity perturbat-Ionn

Si gnals3 , Observed duri ng a passtage Of' a1 jpot " ashown i n fig. 1. IThe

abscissa in this figure is time while the ordinate. corresponds to velo-

city. The numbers opposite each trace correspond the dimfensionless dis-

'Lznce Of' agiven wire from the surfaoe oft the pate expressed in t erms

r& the local laminar boundary layer thickniess, SL . One may clearly

discern large velocity Fluctuations which ar-, Joneernt ocross Most, of

the laminar boundary layer. A characteristic frequency associated with

these fluctuati!ons corre sponds. to t he most amplified

11Tolm Ie n -Sc hli.c ht ing frequen1cy :APIPopHla t e I- Ifni s CaIse (see also Wyg-

rianski, Haritonidis and Kaplan 1979). Power aipectra averaged Over 200

events confirm the existance of energetic fluctuations at the

Tol Imier-Schi ichting frequency. The spectral peak, however, is not very

strong relative to the background turbulence, and It. is not, clear at.

this point, how It may be used in reconstructing the flow Field ass9oci -

ated with a typical (or a most probatble) spol

After examining numerous vtel'e -Il y recor-d a simple cr1tenion WaS



ie iced which '2las. Afies the recrd accordlng to j , sly di s, , ngulib

HiU MOr Of large coherent fluctua.i1-ins. The velocity records are first.

!,,w-pass-filtered digitally in order to remove from each record the ef-

!'eo13 )t' ,.e sina[' scale turbulent Th uctuat o, s- h, ru t i'd r;cnrd 1:;

~:.it:e., and the 'i:rres at whici) th veiocit y drop-, ti a i.i Lnim , cally

:-,re recorded and stored in memory as indicated by ltie vertical lines i:

figure 2. The local minimum voioncitV has-t to an arbitrarily deter-

mind tresholId level relative to thc neighboring maxima before being re-

corded. The treshold criterion eliminates small amplitude fluctua ions

frnm the count but introduces an element o-'W bje;tivy to the pro,

d rJ'.. It. was empi ri cal I y estanli ,;hed I. h1' ri: I I ow i n I .i nn ;

. nt'.leto the choice of the _-resnild o1,1 . ,o xmp I e ha l f i n

he: t r 'shold level would result 4n accouri.g fR or one additional minimum

kt, rather than 5 ) in tic upper vl,,c '.y '. . <iwn In fig. 2.

Adopting this procedure for -.a2ii iii (. un i su. stat ,Ion , l;I I tht:

ci tssificatlon of spots accordig ! .he number of' large eddies which

-iey contain. Stone typical probabillity densily listribut !ooi showing

I] 5,, st probable number of eddie ''it the L n [) n of' m im(nset.ry of' thi 3pO,

a'. a given distance from the perturoition are tioW:l In f t . 3. The

m-ost impxrtant concl usion from the se h 3,t.rams, is thtat the avarage

num|ber of large eddies In a spot: i..nal.

For example; measurements mase 3'5mm diwnctrIeam of the perturba-

tton (975mi from the leading edge of' the plate) indicate that the aver-

age number of large eddies in a spot. is 11.6 aid lhe mn~t pr, b:ib I p,ot



.iei.-.ted on the plana~e of' syrnrrt' ry he! wtool; 0. .2..j y16 L ~ 6 n %;

. go odd i e s. Tht? most probabli number o-f' !di 2flir Ul.e w1 fs 2 a dfj

Y/L>0.8 41 sli ghtl y lower (a y/-d : 1 !-he m. 3', pr')babc i enuv.;r

4 ) neaiise the initial breakdown trA trbwl etw!< '*~; .~~Y/~ L

t- at sfi Krv, Lz na y K orTnoda at (Id V ; i udo;d -tit I ' vino o& 1 lo (-o'j f

lunol arrive perhaps at. the mcungstatIA-ri.

The eddy detection scheme shown In fig. 2renders not onlIy C'h e

tirioer of eddies in a g! yen real i zeit inoi bu. a I so hc time of thlr ir

v il at. 'he location of measurement. I._ S 1,hfl 3. WOVe roY mrci and I1.ie

a'flb iityderic l!y .,- thei rcr i bu i<'p . t pars.i

:vo eddi~es arrive at pref'erred l.imei' of, tho i:.0' w ~a (Vig. 4,.

Th us IF one selects onily thoelspu ::wni .t o, tit ii, giv1 uri iumh or ~i

I esnc histogrern showi rg the-ir ;of 1iiiC -I i3f'i~ r; ' i

nUHmnel I'F peaks ; eachl peak c',ri . ci pru ureni, i il t Ifl of cl u-

,i val of the spciftic eddy. iIO.he probt t, t:v densbity di ,tribul ifri

h te niumber )f' eddies i1n a 9. tw? -1~ nor i by _-ho,) 3 ng on I y t no So

qpots- which conta in the most probot lo numbf-r f tl ic for f'urther art,,-

I yc; are selIect s bet ween 25 ~ -';,of tht t:i r I inunber ofV events3; SUeb

laurge fraction justifies the uldi vi sion (,f' 1ransi tional spot s into.;

LiE' ups containIng an equal number o)I eddiez;.

The abvemetitiloned infornatijon caii be used -ntat n the detailed flow

field In a spot whioh contains a pre.scribed nimber, of eddl es. The pro-

:'df' I Illustrated shmteii n ~ :;'frgI;ne3n.ii

vaii1 .iges In mappilng 1tbu1 How H":c'II'y'nw')" .ipol cI i f1 ig judd 1(':t



i) The number of eddies in a spoi i-; d,,,,ted and I si mpe I-

.nremb Ie-a v e Iagvd v,' Inc i'.y Y c1 d ~>i i. ():-I a'

:uiatud (f'g. ')a) . Since -n l y the :;p , J ,, i ri w, I ,- " ,

selected for the averaging, the ensemblu averaged velneily e-ntains

:I er)al mii ima. It is clear, however, li:- -h amp i I , ,f' no.:j

minima is riot representative of the veln( ity record in a single re-

alization drawn In the same scale in fig. ')f'.

(ii) Each realization is .shi fted in I.-*me in ,rder to al ign 1 he

lncation of" Its last mini mum be 'ore fivtcri,;tg I rig . Dh cebl e aver-

aged velocity resulting fron the alignmen. pr(cfedure Its shown i n

fig. 5b. The amplitude of the trailing lI maiion in the ensen-

ble is enhanced by the alignmm,-t prce:o; i-- ,',mpar'cahlt t, ,i

amplitude of the single real izatio>n showi in fig. 5)'. Ihe neigh-

bouring minimum was hardly affncted by II(! ;IIi grmen'. while Ihe

first minimum disappeared.

(iii )epeating t.he alignment pr'()Ce(d r,' I',w ihe first ird II,

second minimum enhanced the ampli1le ,of )t he particular mnim l mo

,concerned (fig. 5c, 5d).

(iv) A composite, ensemble-averaged vl,)city pIrturbation re-

cord is generated by subdividing the ovrill tempr'al recoird intn 4

sections (fig.5c) ' This sonh' lvi.fl-n , ,; : 1 ) ,:h I ri)g, o:ily

.. . .... __________



has a li mi ted zone of in fi Uonce. Th I IQ h- i 1 y p erI titia I (i nin re-

gi on s M and (4J ) are under Iho tota I irit'i Ie)of' mii'ma A and U;

re Spec tivel y. The veloc it'y pert urbatI1on i lioflH (?) arid (3)

t ,IVef tbeetI we4g I!, ed Pl')port1 f di, I ! o 1 r;' I ~ 'j;

Ir',orn poi III'- A, h- anid C r(1!p,-'!i V( ' r -* r~ I ihul

velocity preturbation at poini s A; H ; C; ir, -1 ieni calIto 1.he

veloI e ity- pert.urbat! nns bnown i n figs. bd, 5c, b respeet ively .

The velocity in region 2 is a weighted average of the records shown

ill 11g. 5c and 5d respectivel y while I ho vol il y in regic-n

the weighted average of' records 1--c and 5~h.

I'i2 procedure !an bte applied to anly flumfb :t .0 edliea-' -:xi ,;' in 4n a

ii tpi-bah 1e spot at. a given cooed i'nal e in ei 'I Fite n1ti male [.;ripo so

'' t "hu pr'o;e as i oreconstruct I det ailed .3 .; ne:n:::.)al flow fleldj In

,tie in-0.a probable real izat ion free An I largo. mnfli it' penrt rrinoa urenc'nt 5,

ioepl( uig the fact. that, c'-nsecul'Ave reaIi zitit'ins .rt (irkly Lroaly Simi.-

!:t- . Ill( 3ucc ss -'F the proced ure 1! d&, n Ini y eom r n, recon-

ar'e dvto bc"*'!y pert urbatiton cont. ur3 in I sp ) wit I t tIhe con ttur-,

measured by an array of wires durig a passag2, of' a sIngle realization.

The: euixrlarl snn isl made at the lags.disla;mn., I'ro tne location of' thte

;ier!t urbation for which data ti availIable (i .e. ;it X-Xp*2rt 3i5frm). At.

tfils distance the spot. Is already quite l arge anid may b 1 c !d ered

:'ullIy turbulent (Re LE) .3* 0o i The 2o.rfipal'i Win thusJ

r-epe-sents '.he most severe test of the procedurc (,aioto the A U Iable

dotl i
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A simply ensemble-av eraged velocity perturbation recr'rd is Shown in

fi g. 6a. The velocity perturbation is entirely positive near the sur-

face and entirely negative at lartz, ii5laue,; It-i' 1hlie wili I'llibis rI:-

2)r-d , however , differs somewhat ft 'a 3iinil ;i Ail i tepfwrted by Wygnanik i

liaritonidis and Zilbernan (1980) because trio nemsretfnents w!-re made at

mnuch lower Re. The most obvious di fference coricerris the exi st'Once of'

Iwo mln"-ma at an interiniate distance from the2 wall , (0.25<y/5, <0.t)

which are marked by arrows in fig. 6a. Another difference is concerned

with 'nie extsteince of' a positive v'iecity perttirhtO ion near the leading

edge nf the spo4.. which extends to y/SL : '0. 6, wh1 I e 11 ic n longer ex ists al,

yIS-L =0. ll at. higne~r fie ( see Wygnan-, ari~ loin riA ", mndi Xi I beritan 1950) .

The same data was reprocesseti i.corditig 1c, thef procedure outlI Ined

earlier and plotted In fig. 6b. Phi~s data tept-esents a velocity per-

tur-batiOtt resulting from the sole ;iii uctce f !ht large eddies, in tile

mnost probbable reali1 z at Ion , on liet_ plcnen of qyrriRii1-y of thle spot at. a

given he, and X. The most probabi.- ;pot. cottainc f; I large eddies at.

G.1 Y/8, ", 0. 6; 14 eddies near tit- surfaofe anl tY 0.65 (Y/geO.65 and]

otnly 3eddies at yS L' -1. The per", titbations, !;-t wi r, Vi g . 6b coni a i n

del, a ilIed I nfornatlIon ab ut the 'I n ri ri cr :;truiF I it, )ftheli f'low wh Ich isr

not. visible In fig. 6a. Heavy filering of lb', Al,-t in fig. 6b repro-

d lce!5 1, i reguis.r ens :nble avoet't .ed v(Alt I y j,-t ir0il Ions;. Vell I '. iIY

pf cturlbat ions recor-ded dunring thel, p :~l!ige "': .I, fit :i spot ill thle ex -

perimnent are shown in Fig. be. The veloiti'y re *)rd contains high fre-

quencie!s associated with small lurbulent ed e!; wiIch are simply Nl I -

1. eredl and replo0.tecd on the samei, fig urn . I 1k. i I meed ni gna I I L-, i s-
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jI wit A Vert i Cal ly t"1r conveni ence -t cinpari 3seor ;1ndI I 11loughi i 2 ; 1o'

at i t. ) rit mnf- probable real i zat ion , het( I atl ev appears I,( con-

un i he mosti relevant information which i s i' sinrg in fig . ha.

V ~ I t y P(-I -Itj irbat.i ,n :, 1a Ii , OII:; :1' ;p nif I g:;, . i ,b l .

jlo I ,fted in fig. 'I. The vertilcal sc;..ale in this f'igure corresponds to a

distance from the wall while the horizontal scale is time. Using a re-

presentative convection speed ii, apptear9 that thu, vertic-al scale is ap-

prox imatel y stretched by a factor, of bu. The stim ilarity between I he.

velocilty perturbation contours recorded durinig -a single event and the

-A i,- 1 ost. probable perlurbat.ioin kcontours -hiw n f1g . lb I prc. s-

,-*v wh:ile the conni urs sh-wni in uh ( iitlnI uchVa i

3) THE SPAN W1S JIlISJ N A~~TAiIA LA

There are objective altffel nti h in )W- hiiilf teiabl:, kl:il a ret- ar,

t ie wall1 using a rake of' hot. wilres orienited in 1tie stpanwiso ( Z) direc-

I Ion, because any small surface posi neni par iI I I lo lhe wall may pr-

dutc e lift when inserted into a boundary laycn reauil 1 ing in the stieddtng

of Itrailing vortices. One may no". nvercome I.Wis difcuity by poalItion-

rig thne rake pa rall1el1 to the dI ieciion o f t 1) ( mea n ji.reati Incri at ev er y

1 e vel from the surface because the m-ake may sl il II IIftI periodically

wille interacting 0ith the large coherent structures; in the boundary
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wh Ic h Is equivalent In strength to the bound vortex aissociated with the
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' ~.ributC - "he Velocity pe!ilton teea' -ti was; litser re-
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"Mruq downstream (if' he origin. 'ii Iiwi pt in '' .1 It,,'i

ht, fi lormlgttdlum11 Strt'UrA'e$ sf a 1
iiI "I i \I' ' 5, . wy'-
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ABSTRACT

Pulsating flow of air in a straight smooth pipe was investigated

experimentally. Most measurments were made at a mean Reynolds number of

4000, but the influence of Re was checked for 2900<Re(7500. The period

of forcing ranged from 0.5 sec to 5 see which resulted in the change in
the non-dimensional frequency parameter L :tv f 4.5 to 15. Velocities

at the exit of the pipe and pressure drop along the pipe were measured

simultaneously; velocity measurments were made using arrays of hot-wire

anemometers consisting either of normal wires or an x array. Signals

from the anemometers or pressure transducers were digitized and pro-

cessed by a minicomputer before being recorded on a magnetic tape.

The introduction of periodic surging had no effect on the time mean

quantities. The present data was compared in detail with the theory of

Uchida (1956) in the laminar flow regime. The time dependent components

at the forcing frequency were represented by the radial distribution of

amplitude and phase. An integral momentum equation in a time dependent

flow requires a force triangle to be maitained at any instant. The

triad of forces are: pressure, inertia and shear. All terms of the

force balance equation were measured independently providing a good

check of data. The measured turbulent characteristics of the flow, in-

cluding the R45 values of the velocity fluctuations, Reynolds stress and

short time power spectra are dependent on the phase of the forced oscil-



lations.

The radial distribution of the phase angle of velocity is qualita-

tively different in laninar and turbulent flows. In order to explain

this differenoe the concept of a relaxation time of the turbulent flow

was employed. A simple eddy viscosity model for time dependent flow,

thih takes Into aooount the "memory" of turbulence is proposed, and

numerical solution of the Navier-Stokes equation for the turbulent pul-

sating pipe flow utilizing the proposed model were obtained.
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a =sound velocity
a ,b =Fourier transform coefficients
A 4,A2  =integration constants (hq.(Z.2o))
A z2o.0 empirical constant in eddy visoosity model
o =power spectra coefficients
D =aiameter
9=anemometer output (volt) (Chapter 2)
E =turbulent energy (Chapter 3)
f =frequency
f =dissipation frequency
g,% =arbitrary functions
k =0.4 empirical constant in eddy viscosity model
2 =mixing length

=length of tne scotch-yoke
L elengtn of the pipe
m =mass of the gas in the settling cnamoer
p =pressure
I =atmospheric pressure
- = V.p, vector of pressure (Chapter 2)

= :0.5 apI/9x vector of pressure (Chapter 4)
=flow rate
=p Q 1exp(-iO I vector of flow rate (Gnapter 2)
=(r)e;o(-iNq I vector of flow rate (Wnapter 4)

r =radial coordinate
r =piston dispia..ement
AP =pipe radius
fie =U/- heynolas number
St =f/U btrouhal number
t =time
I=period of pulsations
T =aosolute temperature (deg K)(in bq.(2.7) only)
U =axial velocity
u, =friction velocity
U =OulA velocity
T=velocity vector
u',v' =turbulent velocity fluctuations
v zraoial velocity
V =volume of the settling chamber
V =wp V exp(i¢ ) vector representing the change In voluae
W=mecRa~ical power
x =radius-vector
x xaxial coordinate
Y I zrefined in p.29

z0 =I 11
Greex Letr

a zhv-7 frequency parameter
B hot-wire inclination angle



Y

6 :oouncary layer tnic.Ecss
6V =vIScOus suDiay-.r taicness
Est =.tog.cs layer thickjness
E =:idne.uatic eddy viscosity
C :inematic ey viscosity in steady flow
CI =Kinematic ecdy viscosity in oscillating flow
C =complex eWdy viscosity
o =rclaxation time

=friction coefficient (Cnapter 5)
:acoustic wave length (Cnapter 2)

11 :uynamic viscosity
V :kinematic viscosity
r 1.J2 empirical constant in edcy viscosity oodel
p :censity

0. k /)(/P

=sLiear stress
T =( T1/r)exp(iOT ) snear stress vector
TE  :dissipation time scale

) =pnase angle
2W z f cyclic frequency (Hz)

zr =critical value
p =piston
1 =azplituue of oscillations

:value at the wall
=< enotos phase average
=toveraar) denotes time mean value



CHAPT 1

TROL UCI10" ii M, k Viku 09 LIT kAiUh,

1.1 General Introduction

The pulsating pipe flow is considred a "siople" ticc -epc:..cnt

flow. it is "simple" both spatially and temporally, in tne aosenca of

swirl the pipe flow is two-dimensional spatiaiiy, an, in tne full- 4c-

veloped region all mean quantities are functions of tne radius only.

mevertheless, the theoretical solution for tne proolem of the linear

stability of the stationary pipe flow was only recently obtained (see

Goldshtick and Shtern (1977) and the process of transition from tne lam-

inar to turbulent flow is still an enigma although It nas oeen investi-

gated experimentally (hygnanski and Champagne (1973), Rubin, wygnans.i,

and Haritonidis (1979)). The spatial "simplicity" of the flow is tnere-

fore somewhat delusive. The superposition of simple harmonic oscilla-

tions on the steady mean flow adds a temporal dependence which consider-

ably complicates the detailed analysis.

The importance of studying time dependent flows in general, and

pulsating pipe flow in particular, is obvious. Most biological flows

are pulsating, may be because the peristaltic pump is the simplest pump

wnich can be employed by a biological system. eulsating pipe flows were



tnore'ore extcnsively studie oy investigators associctc iitn medicine

anc life-sciences (for refercnces see uaro, eectley anc ocroder (197h),

i.ussain (1977)). iion-steady ilows occur also in aany engineering appli-

cations, for example: tne aiscnarge of any piston pump is pulsating,

tnus the flow in an intaKe or exnaust manifol-a of internal comoustion

en-Ine is pulsating; the flow in hydraulic lines anA control systems

often pulsates CtC.

1.- Inc Analysis of Periodic ata

Ine periodic nature of the turoulent flow suggests tne decomposi-

ticn cf any flow, variable k,t) into 3 components (..ussain and Reynolds

*(,t)=g(x)+<S(X, )>+g' &,t) 1.1

ancre g(x) is time mean value of the variable g(x,tj at point x

T/26Wl a g(-X,t),ut

-T/2

<gtr, 0)> is tne contribution or the periodic part at a phase angle 1 at

tae s&Ae point x and is cefinec oy

N
lim 1/h (g,(x,O)-g(x)-

N- i -
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ana s' (x,t) Is the random nonperiodic part. bxperimentally, the value

of <S> is aetermined oy averaging the ata at a fixea phase angle ana

subtracting from the result the time mean value 1. The flow is pulsat-

ing provided the quantity <g> does not vanish. From the definition of

toe phase mean component <g> it is clear that the following relations

must hold for the temporal mean values

g =g)-zg' <h>-O 1.2

A distinction is sometimes maue between "pulsating" anc "oscillatinS"

flows; the former term implies that oscillations are superimposea on a

non-vanishing steady velocity, while the term "oscillatin3" flow refers

to g('IO. ritc phase depencent part of the flou <g> is referred to as

the oscillating part.

Assuming that the flow is not only perioic, out also narmonic, ana

defining the phase angle fa (t, the periodic component aay be represent-

ed oy the real part of the exponential

<g(x, *)>=e(g(x)exp(i( wt+ * )) 1.3

wnere gI(x) is the amplitude of pulsations and * is a reference phase

angle. All phase angles referred to In this worK are measured relative

to pressure. Whenever a periodic motion is not simply harmonic, toe

ti e dependent variable can always be expanded in eourier series, so

tnat the rigat hana side of Oq.(1.3) oeoomes the leading time dependent



tern in the expansion.

in tne analysis of the narxonically pulsating flows it is often co-

venient to use vectorial notation, which is generally accepted In

electrical engineering, and represents graphically tne periodic compo-

nent of the variable <g> by a vector of the lengtn g1 ana angle 0 re-

lative to a reference direction (in our case tne pressure). This pre-

sentation will be used later for further eluciuation of phase and ampli-

tuoe relationships in a pulsating pipe flow.

1.3 Governing Equations

in the absence of swirl the circumferencial co-ponent of velocity ii

vanishes thus only the axial u and radial v velocity components has ceen

.)
considered. The continuity equation for the incompressible flow in

cylindrical coordinates has the following form:

3u/3x~l/r 3/ r(vr)aO 1.4

Decomposing the axial and the radial velocities Into three distinct

components according to (1.1), and averaging, we obtain that the contin-

0) The full set of equations for the nonstationary flow In the cylinor-

ical coordinates was given by Cneng (1971).



uity equation in tne form of (1.4; is valid for each of tnrce compon nts

seperately: time mean, perioaic, and random.

Ine t.avier-Stoaces equations for axial and radial velocity compo-

nents (see ninze (1975)) are

au au au 1 2 au _a 2u 1 au1
-+U + V" V (3 r- + -- + 1.o- I5

Ir F + x 2 r

av 3v 3V + _ +2 v + a V .6+ rU + V - ar ax
r2  3 r r2

Decomposing the velocity and pressure terms in (1.5) and (1.6) ac-

cording to Eq.(1.I) and averaging with respect to time taking into ac-

count the definitions (1.2) yields:

- - i ixa 2
-i 1 a au a "

2 +u' 2 )- 1 L r (<><v>+u 1.7
u x+v V Tr PjJ x (X2 r ar

rr 1 r<vv,2)- L (<u-><v>+'v') 1.8
I- +v3 + C .+ - r r 1 rx a IF aX2  rr r r ar a1

Equations (1.7) and (1.6) indicate that the Reynolds stress in pul-

sating turbulent flow can be regarded as a sum of the oscillating ana

random parts. The Reynolds equations for the oscillating component may

oe deduced by phase averaging of the time dependent equations (1.5) and

(1.6) and suostracting from the result equations (1.7) ana (1.d), res-

pectively.
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,.nen tne pipe flow is tully -erciop&, "i tac tiae anA piaze ar

-r, etcrr ars inepercent oi t: tcniz- cocrin:. .; taus it !ol-

lo :z-.- iroc toe coatinuity ecuation t,-.it tnic te~poral r ;-F-se avcra.c,

: A..a coponcnts oi veiocity vanis in tie iully ocvelopeu reion.

v=<v>aC

The Aeynolas equations for tnc stationary Fnu cscilftin3 components of

tne alal velocity are then:

~=-/p a p/ax+l/r a/art vr'ui/r-rv' ')

a<u>/3t:-11p 3<p>/ax+11r( vra<u>/ar-r~u'v'>) 1.10

an, for the fully developeQ lazlnar flow, equation (l..)j is reduce to

3u/3ts-1/p ap/3x+l/r 3/ar( vr3u/3r) 1.11

As a result of linearity of (1.11), the solution is a superposition of

two Incependent parts: tne steady parabolic velocity profile calculated

oy foiseuille and the time dependent oscillating part.

1.4 neview of eertainlng Literature

Welooity measurements in oscillatory pipe flow were first made oy



ta~e c

AxiZiV.rcison ;1fiio) and iAcnarason an,& lyitr &.,iey found, that

in ., pulsatin.; i.inar flow tac maximum o tioe-aean velocity occurs

near tne wall of tne pipe ratar than on tne centerline as It does in

stationary flow. The location of the axlaum velocity approached the

surface with increasing the frequency of pulsation. nis phenomenon was

called "annular effectm .

1.4.1 Laminar eilow

.oexl (190) gave tneoretical explanation to tn annular effect In

laoinar flow oy solving equation (1.11). !ihe fully Gavelopea laminar

oscillating velocity profile was found to be controlled by a single non-

clensional frequency parameter a :hrwx. reor low values of the fre-

quency parameter ( c<1) the velocity profile is nearly parabolic In ac-

coroance with the instanteneous value of tne pressure gradient. for

nigner values oi the velocity profile deviates from the Poiseuille

form and the annular effect appears.

voersley 01 55) and ucnida (195o) extendea the solution of bexi

for the velocity distribution and calculated the phase and amplitude re-

lationship among the pressure gradient, the mean bulic velocity, and

shear stress in oscillating or pulsating pipe flows. T1o paper of ohil-

da gives the solutions in the most convenient form and this will be use

as the main reference. Atabei and Chang (1961) tried to solve equations

(1.5) and (1.o) for the developing pulsating flow in the entrance region

of the pipe. Lhey estimated the non-linear inertia teras by assuming



Jasc

tac;. to oszx:o~ct.. to toc iz ,;lL- c 3 ,,J3, znc. to t.-ie in-,t-.n-

tcrxouws Vi-L-- :I t. - IClozity -:t t; ,4 t~ ccs w) , -derc~ u c

ta;--luz ci . r.ora vcioz~it, et t.-E cnr.ct ol t,.- pipe, anu ai is

rciative oi vciocity puisationz . inf. rE.zuits are not present-

ec In an armdyticai f orm but a 'procc~ure is cvtcpe ,~i~ provi(Aes a-

soil.±ion for cany Ziven set ot piaa.c2ers.

Linfozi inu ihyan k 155) ceasured the relction oet~icen tne pressure

gracient anctA tne flow rate in an oscillatory i Io oa &.:i.:ture of Uatcr

titn gly.,ol. 'Aaey use4A on:,' floi, visualization. tfo~.cstr aIesurlr-'

velocity ana tn^. accuracy of' trie rcsuitz~ var pocr. Lncy conclu-c..

nowcver, that the measured velocities aree, i.it.i t,-4c tacoretical. calcu-

lations of fioiersicy witiiin tIiz cztioatcfi e.LperiLwcntaL error.

L~eni3on 0.170) ana Lsenison et ai (1-1 reportcu on mcasum~e~ts

%Ae inp-ai; la~ainar t'±oT, 4,.t. QircctionFally scnaitivc la;ser vclo-

cimcter. iiieir apparatus was c.-O uiareters lcrN;, so t~~eir measUMents

ooulh ae made votri in tLhe entran;.c region =4~ t~- iuily ceopeG region

of tee pipc. 'ice viscosity of tne worizinG fluiQ ;-,s va.riaoic in order

to proauce tne cGesireU flow para3eters (Mean r.eYiio~is nur-oer aoout M 6

an6 frequency paramneter 4.epj). Thhe results ootaineu in tne fully ue-

velopeci region were in gooQ zareement wita traeory out in tee entrance

region .lsorepanciea were founi astiueon tne neasurczieets anu the precio-

tions of Ataoekc &no wieng. 'inc maeasurec. velocity profijc -,cvciopeu sig-

nificantiy 31oVcor, teen predicted teoretloally.
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Unmi ct al (197b) investigateu both tneorctically an experimental-

ly tne laminar pulsating pipe flow in air, taKing into account, that the

flul is 3ligntly compresesle. 'ihey concluded that for Aw<<3a, unere

a is the velocity of sound, tne radial velocity and cross sectional var-

iations of pressure are negligioly small. hils result implies that the

compressibility of the fluid does not change the radial distribution of

velocity as long as the radius of the pipe is much smaller than the

sound wave lengtn produced by the oscillations.

1.4.2 Turbulent and Transitional ilows

One of the Interesting features in the laminar pulsating pipe flow

is that it nay contain temporarily an inflection point at some phases of

the motion. At nigh values of the frequency parameterat, points of in-

flection exist at all phase angles, it is well known that an existence

of the Inflection point is a necessary condition for the instability of

unviscid flows (hayleigh criterion). Sarpkaya (19b6) tried to correlate

the instability of oscillating pipe flow with the existence of an in-

flection point in the velocity profile. he found, that... *the flow

has maximum stability, when the duration of the Inflection period re-

aches about 53), of period of pulsations". (SarpvAya (1966), p.596). it

smoula be noted that Sarp~aya used erroneously a plane criterion

(d 2u/dr 2O)for instability, i.e., instead of a criterion applicable to

cylindrical coordinates, namely: d/dr(r d/dr(ru))=O (hatohelor and Gill

(1962)). hevertheleas, these erxwx jould not affect his conclusions

significantly. The stability of bounded periodic flows seems to have
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iJtt~e in common with the A.yleiFn criterion for an unviscio fluid. in

cr-trast to free snear flows, live ixinZ layers, wak:es and jets, wnose

instaoiiity is roverned by an inviscid prooess, tne appearance of an in-

flection point in an oscillatory Dounued flow is a result of viscosity.

Tnus it seems inappropriate to use the Aaylein criterion on tnese types

of flow.

otability calculations for tne plane-oscillating boundary layer

(von Kerszeck and Davis (1974), bavis (1976)), or the plane oscillating

Poiseuille flow (Grosoh and Saluen (1960)) or tne round oscillating flow

in a pipe (lang and Xih (1977)) indicate that the imposed pulsations do

not zaice the flow less stable. Xang and lih have found, that the oscil-

lntin pipe flo. is stable to iiammetric disturoances at all frequen-

cies and at all heynoids numbers (baseQ in this case on the amplitude of

tne relocity oscillations). No theoretical analysis is available for

the stability of a pulsating pipe flow, in wnich oscillations are super-

imposed a a steady parabolic profile. The linear stability analysis

applied separately to the mean ana oscillatory components of the flow is

incapable of predicting the outcome because the velocity profile enters

into urr-zokmerfeid equation in a nonlinear way.

Ine first experimental investigation of velocity and pressure in

turbulent, pulsating pipe flow in water was made by Sohultz-Grunow

(1940). The velocity was measured by a Pitot tuoe, and was limited to

time averaged values. It was concluded that tne instanteneous velocity

profiles were similar to the steady profiles in a converging channel
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urir tne aczcleratlon stage of a period, anc to tne steacy profiles,

exlstinr in a ivcrsent channel. it appeared tiat tne intcnsity of tur-

oulenae increaseQ Quring the uecceleration stage, tnis ooservation was

oasea on large increase in the scatter of tne cata aurin deoceleration.

Wieng (1971) used hot-wire anemometry for velocity measurments in

pulsating pipe flow In air. he nas found, tnat tnere is a strong incre-

ase in the Reynolds stress and the turbulent kinetic energy, resulting

from the addition of pulsations to the steary flow. . strong nonlinear

interaction was found to play an important role in tne dLstrioution of

tne turoulent energy. it snoula be noted nowever, tnat tae pipe usea in

Gnen;3s experiment was very short, about 30 diameters only, and tne pul-

sations were not simply narmonic oecause of tne ai:wrd manner in wnicr

t&ey were introCuceA. Consequently it is impossi;1Ie to obtain reliaole

pnasc averaged Information from tnese results.

uerrard (1971) investigated the turbulent pulsating pipe flow oy

flow visualization teonnique wnich enaoled him to ootain mainly qualita-

tive data. he found a similarity between laminar and turbulent oscil-

lating velocity profiles. Uerrard also ooserved tne pnase aependence of

turoulent Intensity and found, that all turbulence nearly disappears

during the acceleration stage. The similarity oetween laminar and tur-

bulent oscillating velocity profiles was noticed also by tAsmann (1973),

wno used six thermistor prooes for instanteneous velocity Measurments at

different radial positions.
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nuzocr of investigators (6ergeev (19bo), Clarion and elissier

(15 )r,nerIi ana Thomann (157), among others) tried to determine tne

transition fieynolds numOer in oscillating pipe flow, whenever the flow

oecomes turoulent during a portion of the cycle only. a large scatter

in tne results indicates, that tne instability ne.s a nonlinear character

an,. depenas strongly on the experimental facility. in the work of herK-

Ii and Thomann, for example, a pipe which was closed from both sides was

used; that resulted in the appearance of shock. waves and the pressure

gradient was not spatially uniform. Their results seem to be relevant

to the specific experimental set-up only. All thie aoove mentioned ex-

periments show that the flow can oe turbulent during some part of the

cycle, and laminar during another part of the cycle.

Ulamen and hinton (1977) investigated experimentally oscillating

ana pulsating pipe flow in water by a hydrogen-ouoole tecnnique. A good

agreement with tneory was observed In laminar flow at low Reynolds

number; at higher Reynolds numbers, their pipe wnich was only 170 diam-

eters in length was far too short for the flow to oecome fully devel-

oped. They ooserved that tne intermittenoy of the pulsating flow at

higner Re (Re%2900) depended on both the mean he and amplitude of velo-

city oscillations.

i'dzusnina et al (1973 a, 197 3b, 1975) and karuyaaa 1V7) Investi-

gatea a pulsating turbulent flow by electrochoeical method, which en-

aolos measurments of Instanteneous velocity. The measured data was re-

corded on a magnetic tape for subsequent processing on digital computer.
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iney founc a oritical value of tUe pulsation peri ! r' so that for

slow pulsations (i.e. for M> hr ) there is no s1gr.ific2nt change in tur-

bulent intensity at different phase Sngles, anm the flow oenaves like a
"stcady* turbulent flow. eor nigner frequencies (T<T or), tne turbulent

cnaracteristics are strongly dependent on the phase an.le. k calculated

eciy viscosity £UT/(8u/3r)attalne6 negative values at certain pnase an-

Cles, when relaminarization took place during tne acceleration. An em-

pirical relation for critical period of pulsations Icr was determined to

0e:

cr

nere u is tne time aean oulk velocity, it Is not clear from tnese re-

sults wetner tne change in tnic flow oesiaviour results from the differ-

ent frequencies of pulsations, or there might be an influence of the am-

plituoe of tne pulsations at higner frequencies.

irmse (1W5) used laser voppier velooimeter to measure pulsating

turoulent pipe flow In water at high values of tne dimensionless fre-

quency parameter (55< Q(L03). 'me phase shift between pressure and vel-

ocities at all radial positions and at all frequencies was found to be

so ° . An eddy viscosity model was used to caloulate tne time-dependent

velocities In tnis type of flow, and a reasonable agreement was ootaineQ

for velocity profiles at two phase angles.

manaprian and Snuen-Wei Tu (1 oo) oserved laminarization of 1ni-
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tiiziy turouent flow of oil In A pipe wnen ;ulsations were lntrouac-.

i, zy ooserzlCu tnt ti.c au;,iu Z.plituc of tiu velocity pulsations nc..r

t.c urfaue of tne PIPe is Ztttine efor tne iaiimum ampltuoe ociurs

i.r t,;, central region of tne pipe wnenever tWe flow is fully turoulent.

oor an3ular resolution of the data in their experiment die not aiiow

toem to get quantitative Information aoout phase shift angles. The vel-

ocity profiles, measured in laminar pulsating flow, were In good a rce-

ment with the tneoretioal results of Ioniua. -Amilarity was note4

oetween laminar and turbulent flows at tne awe frequency, and it keS

conaluuec tnat toie imposed oscillations nave no effect on tne time m"n

properties of tne flow.
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2.1 General escription of the Experiaental 4oparatus

A straigat and smooth aluainium pipe 33 am In diameter and 17w102

mm long was used. The facility, amown schematically on . was or-

izInally used by Wygnanskl and Champagne (1973), and described In detail

in their paper. The pipe was oarefully alligned to within 1 mm over

it's entire length. The contractico was made of two subseCtions, giving

an overall area ratio of.30:1. As a result of the careful alignment

and the smooth Inlet, laminar flow could be retained at the heynolds

numoers exceeding 20000 without the addlition of screens. he mean flow

was supplied by a high pressure source (6 atm ocmpresor) and oontrollea

by a precise pressure regulator. This arrangement insured that that tne

flow rate was independent of the superimposed pulsations and the flow

regime, wnetner laminar or tubulent, In the pipe.

Oressure oscillations were intreduoed by a valveless piston pump,

connected to the settling chamber. The piston diameter 1Jp was 90 m,

and It's displacement rp could be changed from about r p5 am to r p75 mm

In 17 steps. The length of the scotob-yoks was Z p. OO -M. lie bulK

rate of change of the settling chamber for the lroular frequency w) is



r .. z 1

,iver o

C-/Ct: I W(03 t-rp/it sin .wt

ine amlltu4 ratio in the oulz< displacement oct; :en tne funda ental

frc;uency w anG It's first harmonic 2w is tereforc r /i p <u at tne ni-

goeft possiole displacement amplitude. The oscillations at toe narmonic

frequency coui.. tnus oe neglected. The pump was criven oy 1.5 op vari-

able speed motor, permittin a change In tne prio . of pulsations

oCtieon 0.5 sco to 5 sec. ns repeatability oi tnz 4rio was oettcr

than O.B..

Z-7 cne eiston eump as a ;jour.e of eressurz xL Veiczitj euisaticna

zne velocity anc. pressure pulsations in the pipc, resulting froX

toe coicaent of tne piston, can oe easily analy- e oy assumini that tac

flo, In the pipc 1s laminar and fully develope.. n&e auplituQe of tne

prl:ations o& t1e ouli velocity is UI Q /Irh', uhere A is tne racius ot

toe Pipc, an. is tne amplitu(e of the oscillations in the flow rzte.

UI Is proportional to 3p,/ax, wnere p1 Is thie amplitude of pressure Pui-

sations at tne entranoe of the pipe. for fully developed flow

ap,/3%*p 1 /L , w:aere L is te length of tne pipe. eor a iven amplituie

of pressure oscillations the amplitude of the o U.i velocity U I depends

stronZly on frGquenoy. if V is te steady part of the volumetric velo-
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ci t;:° ( / W ., ,.nrc C is te zc. tIlow rate) .nc is tne nteauy prcs-

sur:, tnr tnz re±ationsnip octuc..n tnc enzaoic avcra~c tinc epcn ent

p.rts <k> en, <p> c;an ae exPrcscc.. oy tne equaticn

<U>/U=<04L= a C(<p>/p)cos s 2.

,;here the ax, plituce coefficient 0,=(' 1/W)(p 1/pj ano pi-asc lag angle €.

wers ealculate for tne fully cvelopeu lainar flow oy Ucr-da (1.)

r nc reproduceu In iig.2.2. Ine aoscissa in tais f'igure is

Io. aiogh/gVA . It can De seen from . tnat Zt very low frequen-

cies k MO()o q z1 ano tne phase lag *q -0. 'tIus, ;,,en tnc frequency of

tne imposei pulsations is low, tie flow at any instant Denaves likce a

Poiseuille flow at the appropriate Instanteneous pressure gradient.

Inertia effects oecome noticeable with increasin3 freiquency wnen tde

flou cannot follow after the rapia changes in prcssurc anymore. k.f in-

crease in c causes a corresponing increase in tne p-.ase angle oetween

tae volumetric velocity and tne pressure q, and dampens the amplituce

of tns velocity pulsations, as well. at very nign frequencies (O WI)

the inertial term becomes dominant in comparison i;tn the viscous term,

ano the resulting acoeleration (dQ/dtiw GI) is proportional to tne

driving force (lnstanteneous pressure). The quantity L(1 Iis tnus in

pnase with the pressure, wails the pulsations in flow rate nave o0

phase lag benina p1 .

onsiaer the control volume in waln the aovement of the piston

causes a corresponding change In tne volume of the settlin6 onamoer.
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if <> is the time dependent component of the voluae flow, tne oontinui-

ty equation for the control volume may oe expressea by:

dn/drd/dt( p V)=-<Q p > 2.2

where V Is the volume, p is the aensity, and <0> is assume, to oe posi-

tive when the fluid leaves the settling chamber tnrou-n tne pipe.

for small Wplitudes of volume oscillations, V1, (relative to the

total volume of the settling chamber V0) ano pressure oscillations, pi,

(relative to the atmospneric pressure po) equation (2.2) can oe linear-

ized to give

pO dV/dt+V0 dP'dtx- p 0<Q> 2.

Jquatlon (2.3) is a linear homogeneous equation, naving solutions

of the form

VVo+VIexp(( Wt I v)) 2.4

POPo p+ p1exp(iw t)

<Q>NQI expl( Wt- q 2.
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where # v and #q represent the phases of the volume and flow pulsa-

tions, respectively, relative to the phase of the pressure oscillation

which was arbitrarily set to be zero. Assuming that air obeys the ideal

gas law

pZSpT 2.7

where kis gas constant, and that the process is isothermal, and substi-

tuting equations (2.4) to (2.7) into (2.3) one ootains

p0iW V1exp(i(w t+ v )+V0iW plexp(iw t)+poQ1 exp(i( Wt- 0q)):O 2.6

Eq.(2.0) contains two unknown amplitudes, P1 and Q1, but the as-

sumption of fully developed laminar flow provides an additional equation

relating the two quantities. Substituting (2.1) into (2.6) and cancel-

ling exp(i wt) yields

iW o VI exp(i pv) Pl(iw Vo- 1/i Op a qexp(-i q))X0 2.9

£quation (2.9) can be separated Into real and Imaginary parts and solved

for * v and p1 . In laminar pipe flow Q/O IrD 4/126 JAL is a known quan-

tity fixed by the flow geoetry and the viscosity of the fluid.

Substituting It into (2.9) and taking real part of the equation gives

- wV1sn #v+(O/ )P) Iq 0 5os * q 0 2.10
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-i-:inzry part of . }rc:i..z tac sczcr- e-uztion

P v Qa sin Og
cos - 1 Po U

(One ;ay now exspress 0 vano p1 In terins of tac piston isplacement V1

ano frequency oi pulsations w

Po a cos a

tg Ov = - P 2.12

(WVo+ P 2 aq sin )

W V1 sin*
l = 1.1V

a cos Oqpq q

'Inc axplitude of tne oscillations ii the flow rate Q can oe expresse.

In terms of p1 an, 6q.(2.1)

QI =p 1 5)a2.14

for a given auplituce of the volumetric change of tne system VIP

aplitu,es of tne oscillations in tne flow rate Q ana in pressure p1

were calculated from equations (2.12) to (2.14) as functions of the per-

io (Fi,.2.3a) at low frequncies (large values of the perioo T,O (1)

aq zl, and the pressure amplitude in the settling cnamoer is adequate to

"push" tnrougn tae pipe nearly all the mass flow supplied by the piston

pump to tne settling chamoer. At these frequencies tne amplitude in

flow rate Is tnuS proportional to tne rate of change in tne volume of

the settling chamber V 1. eor (<1 therefore the relation I/T is
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obtained.

At higher frequencies (a >1) 0 decreases with increasing frequencyq

(see Fig.2.2), and the amplitude of the pressure oscillations in the

settling chamber, resulting from the oscillations in the volume of the

system grow more steeply than the flow rate. in order to understand the

physical meaning of the mutual interaction between the oscillations in

the pressure and in the flow rate, equation (2.6) is rewritten in vector

form, using the notation V=o V 1exp(i$ ); =WVopl and Q=poQ1 exp(-i q):

iV+iP+Q-O 2 .6a

The calculations indicate, that the oscillations in pressure and volume

are nearly 1b00  out of phase (Ovf1o0), i.e. pressure increases when

the piston pushes air into the settling chamber, and vice versa. At

frequencies corresponding to az 5 the resulting oscillations in the flow

lag behind the pressure by more than 700 (see Fig.2.2). Taking Into ac-

count these phase relations, and the fact, that multiplication by i adds

900 to the phase angle, two sketches can be drawn, the first showing the

relative direction of each vector, and the second representing the mass

balance in accordance with Eq.(2.a ):

if V/

VI
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lt t'oilo.;3 from tne di-r.., ta~t the pressure vector it' is in-

+ -0c.Lineu to tne flow rate vector oy aoout kO0° . ,nen tae pressure in

tne settling cnaawer is maio , tne time cepcnent portion of the flow

rate is directeQ towards tne settling cnauoer, causing a further incre-

ase in pressure amplitude. Ine pnase relations oetween pressure ano

flow rate tnus lead to a Kind of a positive feeooacK, resulting in

curves QI=Q1 ( ) and p1=pI(a ) (Fig.2.3 a), which resemole a resonance

pnenomenon. The amplification of pressure oscillations nas however

nothing in common with resonance, since in this case tne system has no

eigen frequency.

At even higher frequencies (a >o) a is small, ana tne pressure am-q

plitu e is insufficient to provice strong oscillztions in the flow rate,

tnus QI decreases, an6 tne amplification iniluence of tne flow rate on

tne pressure fluctuations weakens; so the pressure amplitude decreases

together witn the amplitude of flow rate. Furtner increase in frequency

(a >10) results in a q 0, and vanishing oscillations in flow rate. In

tnis case tne entrance from tne settling chamoer to pipe may be regarded

as closed for the time dependent flow, and tne amplitude of the pressure

oscillations tends to a constant value poV 1/V0 waicn correspon. to the

ideal gas law pV=cor~t.

The results of Fig. 2.3 a were calculated for tne geometrical data

appropriate to the existing experimental facility. The total volume of

tne settling chamber was approximately equal to 1 m3, and the maximal

changes in volume were 100 cm3. The preceeding calculations show, that
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the maximum responce of tne system to the volume oscillations occur at

. sec (a=:.7) (Fig.k.3a). In reality, the maximum amplitude of

pressure pulsations occured at T=2.4 sec, corresponding to C ub.7.

(Fig.2.3 ). The discrepancy between theory and experiment is attributed

to the influence of the entrance region whicn was not considered in the

calculations, and some difference in the geometrical parameters.

fg.2.3 a shows that the calculated maximum amplituce of the pressure os-

cillations is aOout three times higher, than it woulu nave been if the

settling chamber was closed (i.e. A p( a=5.7)/Ap(a- ) zj) The maximum

aoplification in pressure oscillations realized in laminar flow was ap-

proximately 2.5, and the absolute value of Ap at ct=o.f agrees fairly

well with tne calculations (see Fig.2.3 b).

Some amplification exists in turbulent pulsating flow also, as it

bcan be seen from the Fig.2.3 , but the maximum amplitude is reduced.

The mechanism of the amplification in turbulent flow is qualitatively

identical to the mechanism in laminar flow. it will be snown in Section

3.2, the oscillating parts of the bulk velocity <U> in coth laminar and

turoulent flow behave alike, out the phase lag angle q is notably less

in the turbtlent flow, than in the corresponding laminar case. The com-

ponent of the flow rate vector Q, which is collinear with the pressure

vector i0 and thus causes the amplification (see the sketches), has the

length IQlIsin, and thus a lower value of 0q in tne turbulent case

causes a reduction In pressure amplification. The maximum of the curve

pI=pI(a) is shifted in a relative to its position in the laminar flow

obviously due to different amplitude a qoq(a) and phase qsq (a) rela-

qqM A
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tions in this case.

2.3 The Influence of the Length of the Pipe on the Pulsating Flow

It is usually assumed that in a fully developed region of a pulsat-

in pipe flow the pressure gradient depends on time only, and conse-

quently the radial component of the pulsating velocity has to vani3n.

Only recently Richardson (19o0) raised this question in his discussion

of the paper of Kirmse (1979). Richardson argued that applying a pul-

sating pressure at one end of the pipe does not necessarily result in a

linear pressure distribution along the pipe; acoustic waves may make

pressure gradient dependent on the axial coordinate and resulting in the

generation of a radial component of velocity, it was noted in Section

1.4, that the fully developed, laminar pulsating flow is independent of

the axial coordinate because the inertial term in the Navier-Stokes

equations (1.4) (uV )- dissapears, making the equation linear and ena-

bling a separation of the steady from the oscillating flow components.

Tne pressure gradient is independent of thie axial coordinate whenever

any change in pressure at the inlet of the pipe is felt "instantly" in

tne entire pipe. Since a weak pressure pulse travels at the speed of

sound, a, the assumption of spatially constant pressure gradient may

only oe valid for a limited length of the pipe L.

In order to obtain an estimate of the highest permissible pulsation
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frequency and tne longest pipe length L for which the pressure drop

Dp/ Bx may be assumed constant tne flow is consioered to oe incompres-

sible (i.e.U((a). The pressure is prescribed at ootn ends of the pipe:

p=O at tne open enQ of the pipe at x=L; and p=5+p1cos(w t) at the inlet

to the pipe at x=O. When UO<a and can be neglected, one obtains the

wave equation for tne spatial and temporal pressure aistribution

o p/dt =a2d p/dx" .. 14

The solution of (2.14) for tne given boundary conQitions is:

sin ! (L-x)

p(x,t) - (L-x)+pl si a sinwt 2.15
L Psin W L

a

Pressure gradient tnerefore oecomes:

9 x Cxt) Pw tocos ! (L-x)
22....t)W sinwt 2.16

ax.L a sin L
a

Ine pressure gradient may be regarded as spatially constant provided

x w/a«<1 for all x concernea, or that tne lent'i of the pipe L is mucn

snorter than the acoustic wave lenti L<<2 wa/w .

K more accurate estimate of the limitation on the f7requency of os-

cillations of a sligntly compressible fluid in a pipe of a given lengtn

is ootained oy consioering the continuity equation for the pulsating

part of tne oulc velocity <u

___________________________



; a<u>
(pO+<p>) + (p <P>)

t 0 0 x

atP o+kp >i D<L,>/ D)t=- 9e, P>/ 3X-e< T > .l

vnere < TV,/ is tne oscili-ting part of tne wail shear stress

< TV >-p( a<u>i 3r)W .  ry assutinZ tnat tne fluio is only sligntly co.A-

pressibl6, ( i.e. <p>/ %0<K1), equations (a.17j anL k2.1) can be line-

arizeu to give

iF+ PO-' = 0 21

an%

3<u> 3u w >
Po a x R

•,e pressure term can be elmilnated from (4.20) using the adiaoatia

sounc velocity

> a az 3<.. >.

ine wall snear stress < T w> ay be eliminated oy following the

equation
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< 1> pi 2i 2.22
T~ rp

W

and equation (2.1), where Tw andp are the steady wail shear stress ana

pressure, respectively. bhear stress and pressure pulsations amplitude

ratio oT and relative phase shiftf T were calculated using the analiti-

cal solution of Uchida for the laminar pulsating flow. From tne equa-

tions (2.1) and (2.22)

<Tw> a UI i(€. €q)

•w q U
The steady bulk velocity U and the steady wall shear stress T are re-

w

lated by the equation

6 P 0  
PV

w Re 2R

We therefore obtain

TwSO P0 v/R (aT a q)exp(i4 T q

By assuming harmonic osoillations, the time derivatives can be re-

placed by the operator iw , so that a<P>/at1wP , and <U>/3t=iw U,.

Equations (2.19) and (2.20) were therefore rewritten In the form:

dU1  i2.24

Tx " Po P

and



dp1  8p v a +q

dx 2 2R
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'io deterine the integration constants A I and i2 the boundary con-

ditions at both ends of the pipe are used. kt the outlet the amplitude

of tne pressure pulsations vanishes and so does thus the amplitude of

density pulsations P (x=L)=j. For the given amplitude of pulsations in

tne flow rate, % the boundary Condition on the amplitude of the bulk

velocity pulsations at the inlet is: U1 (x=O)=Qi./ ,R2 . Taking into ac-

count the boundary conditions the final form of the solution is:

= Ql cosh y(L-x) 2.301 rR2 cosh YL

Ql sinh y(L-x)
irR2  cosh yj 2.31

As a quantitative measure of the flow dependence on frequency a

phase shift between the bulk velocity pulsations at both ends of the

pipe was chosen. it is obvious that for the flow to be independent of x

this phase shift has to vanish. The complex parameter which governs the

phase of U at different locations along the pipe is Y, which in itself

depends both on the length of acoustic wave Xz21raA and on the fre-

quency parameter a. The parameter is dependent on the radius of the

pipe and on the viscosity of the fluid. The major factor governing the

phase shift was found to be the ratio X/L (i.e. the acoustic wave

length to the lengtn of the pipe). Fig.2.4 gives numerical results of

solution (2.30) for the parameters used in this experiment (Ra1.65

2cm,Lx1700 cm) and vO.16 cam /sec. lt can be seen from Fig.2.4 that for

L/A<0.08 the resulting phase shift is less than 1'. Acoepting this
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value as the upper limit for whicn one may assume 3p/ ax=const. gives

the maximum permitted frequency parameter a=15, and pulsation period

longer than 0.5 s e. it is worth noting tnat for L/X >0.2 the flow can

no longer be regarded as one-dimensional, even by a crude approximation.

2.4 Calibration of Velocity and Pressure Sensors

Velocity measurments were made with a rake of 9 hot wires, distri-

buted evenly in the radial direction at distances equivalent to

&r/R=0.12 between the neighbouring wires; so that when the first wire

was on the center line of the pipe, the 9-th wire was located at a dis-

tance 0.5 mm from the wall (i.e. at r/=0.97). All velocity measur-

ments were taken at the exit plane of the pipe. A 10 channel constant

temperature hot-wire anemometer and 10 channel amplifier, both built by

the electronic shop of the School of Engineering of Tel-Aviv University

were used in the experiment. The outputs of the amplifier were connect-

ed via an analog to digital converter to a DEC PDP 11/60 minicomputer.

The calibration of the hot wires is done in a wind tunnel, wich

provided a stable velocity stream between 30 cm/sec and 15 m/sec.

Although flow reversal was avoided in the experiment, very low velooi-

ties ocoured in the pipe as a result of the superimposed pulsations. It

was thus necessary to calibrate the wires at the lowest velocities anti-

cipated in the experiment.
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it is w.l znown, nowcv:r, tnat standard Pitot tuoe is not a proper

instrument for measurin air velocities oelou 1.5 m/s. ifn alternative

way for accurate ,easurment of low velocities may be Dased on the fre-

quency of vortices shed behind a circular cylinder, insert in Fig.2.5

(Kovazsnay (194 )) shows the dependence of the frequency of shedding,

i.e. the Strouhal number St=fJ/U, on the heynoids number of the cyl-

inder suggesting that St is independent of he for e>300. The later

measurments by RoshKo (1955, 191) confirmed the results snown in

Fig.2.5 for he>300. At Re<300 St decreases with decreasing te; and the

scatter in the data collected by various investigators is very large in

this area. Different empirical formulae showing the dependence St=f(he)

(see, for example, Uoldstein (19b5), Berger and Wille (1972)) are not

very accurate and may cause significant errors at low Reynolds numbers.

in this experiment a cylinder 1.269 cm in diameter was used for tne

velocities under consideration (0>35 cm/see); he thus was larger than

300 and Strouhal number therefore could be regarded as a constant. The

dependendence of St on he was measured for Re>1700, where a Pitot tube

could provide accurate measurments of velocity, and it was assumed that

the mean value of bt could be extrapolated to lower Reynolds numbers.

A hot wire was placed several diameters downstream of a cylinder at

a radial location at which the vortex shedding frequency is detected

most clearly on an oscilloscope, and the output of the anemometer was

sampled digitally by the computer. The sampling frequency was fixed by

the signal frequency, which was roughly estimated from monitoring the
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oscilloscope. The minimum sampling frequency chosen wds approximately

twice tne expected signal frequency. A buffer of 204o sampled data po-

ints was Fourier transformed, and the power spectrum of the signal was

calculated. The procedure was repeated several times (usually 4 to 10,

depending on sampling frequency), the average specrum was calculated,

and the frequency of the most energetic component was assumed to be the

signal frequency. The repeatability of the frequency measurment was

better than 0.2. which seems equivalent to the resolution of the method.

On the Fig.2.5 the measured dependence of St on he is shown;

Fig.2.6 gives the calibration curve for the dependence of flow velocity

on the vortex shedding frequency.

The detailed description of the hot wire calibration procedure may

be found in the thesis of Oster (1980) and in wygnanski and Oster

(1961). Seven calibration velocities, determined by the vortex shedding

method, were used. A 4-th order polinomial, giving the dependence of

the flow velocity u on the output voltage E was found by a least square

method from the 7 measured points:

ua 1 4 a2E3 .... a5

The calibration curve was further checked for several additional veloci-

ties.

in order to calibrate an x-wire the output voltage was sampled at
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11 different angles (in the range of 270>0 >-70) at each one of 7 velo-

cities used. The output of cach wire depends on both aosolute value of

the velocity vector U and its angle EI=E I (r ) and E2 ( ).

It was assumed that from the measured values of hI and h2, U and B can

be uniquely determined. From the measured 71 calibration points the

4-th order polinomials, giving the dependence of the aosolute value of

the velocity vector !Uf and its angle on the output voltages of both

wires EI and &2 were found

a1 1
4 a2 2

4+... a13 1 a14 2 a15

Ozb1 1 4+O2£24 ... b 13SI b14E2+b15

With IU and 8 Knowq the velocity components were calculated from the

equations ux cosO and v-IinO .

A Validyne model DP215-30 pressure transducer with G15 Sine wave

Carrier Demodulator was used to measure the pressure. The pressure

transducer was connected by a 5 cm long tygon tube to the second section

of bell-shaped nozzle. For the calibration of the Demodulator output a

Fuess micromanometer was connected in parallel with the transducer. The

pressure transducer provides linear responoe in the whole range of pres-

sures. The dynamic responoe of the pressure transducer (1000 hz) was

more than adequate for the present purpose.
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2.5 Data Aquisition

A D.C. voltage corresponding to the output of the anemometer in

absence of flow was subtracted from the signal before amplification in

order to take advantage of the full range of the A/D converter which ac-

Uepts signals between .5 volt. The converter having a 12-bit presision

provides a resolution of about 2.5 my. The amplified anemometer signals

together with the output from the pressure transduser were sampled at a

predetermined frequency, the sampled data was converted into 16-bit

words and arranged in buffers.

At the initiation of a measurment the period of pulsations was de-

termined by the computer. Two different methods to measure the period

were used in this work, the first based on the 50 Hz clock of the com-

puter, and the second on 1 MHz clock. An optical switch (Monsanta MCA8)

was used to obtain trigger signal. A cylinder 1.5 mm in diameter, con-

nected to the driving motor of the piston pump, passed at each revolu-

tion trough a narrow gap of the optical switch, causing change in the

output current, which operated TTL Schmidt trigger. In the first method

the time ellapsed between two neighbouring trigger signals, supplied to

the interrupt input of the computer, was measured by 50 Hz clock. The

resolution of a single measurment is 20 mse, the final result was obta-

ined by averaging 10 measurments. In the second method the trigger sig-

nal served as input to the A/D converter and was sampled at a predeter-

mined sampling rate, controled by the 1 MHz clock. The period was der-



i¢, 1r:r, tnt- n:doer of sa.plcu points cct -esn t:,o oonscquent tri rJt

* t.c; ti-ie interval xtven saIpe. 'he r'solution of' t:i3

:.,.t ,.. _. ls on seaplirL; frcuency ar. was in principle orOers of ilag-

rA 2c ,ore accurate than in thc first metnou. in tnis case too, tne

firl.J period was determined by averaging over 10 cycles.

with the period of pulsations Known, the sampling frequency was

fixed so that 1024, 2046 or 4096 points were sampled per channel per

period in order to facilitate the processing of data using a Fast eour-

ier 'Iransform (FFT). an estimate of the repitability of the period froLi

one event to another was madt counting the numoer of sampled points over

:any cycles, and it was found to oe oetter than 0.3k.

iwo different sampling methods were used. In the first method a

triger signal, supplied to the interrupt of the computer, initiated the

su:pling wnicn lasted precisely for I period. From tne sampled data po-

ints appropriate velocities and presssure kere calculated and the re-

sults were recorded on a magnetiz tape. After the data recording was

ci-,;leted the computer was ready to accept new information. All x-wire,

--.u "o.3e of normal-wire rage data was acquircd using tnis method, wnien

ns tin advantage that it does not constrict the sampling frequency.

'n:,,1' .kre, nowever, two drawbacKs. Firstly, tne overall acquisition

t~~, Is much longer than the time of measurment, oecause the computer

r',ulrcs additional time to convert tne signals to velocities and pres-

. ~and to record the processed data on tape. 1he overall duration of

ti- z.asurment increasd thus by a factor of 2 in toe case of the norclal
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wires and by a factor of 4 for the single x-array. The second drawback

stems from the fact that the duration of the measurments corresponds ex-

actly to one period of pulsations, thus no spectral information can be

oDtained for frequencies which are lower than the frequencies of pulsa-

tions.

A different sampling method was used therefore in conjunction with

a rake of normal wires. The data points were sampled continuously dur-

ing more than 8 periods of pulsations. The memory was divided into two

buffers, and while one buffer accepted the information sampled, the con-

tents of the other buffer was recorded on a magnetic tape, thus provid-

ing the possibility of essentially unlimited in length continuous sam-

pling. The output of the optical switch was connected to an additional

input channel and provided phase information. A total of 11 data chan-

nels were thus sampled: 9 channels contained velocity information, 1

pressure and I phase information. This method does not have the two

drawbacks of the mentioned before, but it is limited to a sampling fre-

quency which could not exceed 1800 Hz. This frequency however was quite

adequate in the range of Re considered. It should be noted that in this

method the "raw" data was recorded on the tape, and the calculations of

velocity and pressure were made at a later stage.

In the latter type of sampling single continuous record consists of

more than 8 periods. In laminar flow 7 recordes were usually acquired,

providing 56 measured periods of pulsations containing 1024 sampled po-

ints in each period. In turbulent flow, the number of records was usu-
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ally 30, giving 240 periods witn tne number of points in each period

ranging from 1024 to 40'A,, depending on the duration of the period. in

laminar flow, tnorefore, 57344 points were sampled for each data channel

per measurment, while in the turoulcnt case the number of sampled points

5 6
per cnannel varied from 2.5-lO 5 to 1.

2.b Preliminary heasurments

In most cases velocity measurments were taken in laminar and turou-

lent flow regimes consecutively while keeping all the flow parameters,

(e.g. mean heynolds number, perioa of pulsations and piston stroke)

constant. before recording the data on magnetic tapes, preliminary

measurments were made, in which the data was sampled at the rate of 1024

points per channel per period for several periods. The time mean velo-

city was calculated for each channel by averaging, and mean Reynolds

numoer and flow rate were calculated by numerical integration using a

Simpson formula. The exact distances between the wires were measured

with a microscope and were used in the integration procedure. In lami-

nar pipe flow the center line velocity is double the mean bulk velocity.

This fact, coupled with independence of the mean flow rate from the

state of the flow (whether laminar or turbulent) was used to allign the

raice at the exit of the pipe. The preliminary measurments also served

as a simple check of the drift in the output of the anemometers.

it was observed that the hot-wire which was placed at a distance of

0.5 mm from the wall overestimated velocity values because of heat
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transfer to the metal wall whicn was absent in tne calibration condi-

tiuns in the wind tunnel. At the Aeynolds numbers usea, the velocities

near the wall were usually lcss than 0.7 m/sec. THus, tae neat transfer

wa* greatly influenced by free convection, which is strongly depenaent

on the flow geometry. For this reason the mean output of the last %ire

was ignored in the integration procedure and served only for obtaining

infomation on the oscillating and turbulent components of velocity.

The non-slip condition at tne wall was taken as an additional point for

the purpose of integration. The hot wire placed on the center line of

the pipe did not contribute to the flow rate because of its vanisning

radial distance.

For all radial-raKe data, only seven measured velocities were used

to determine the mean flow rate. The relatively small number of data

points and absence of reliable information near the wall, contributed to

a discrepancy between the Re calculated from the velocity profile and

measured with a rotameter of about .5$ This estimate was obtained using
the fact, that the flow rates were independent of tne flow regime, and

compairing the results obtained in laminar and turbulent flows with the

constant rotameter reading. The accuracy of this measurment did not ap-

preciably changed by changing the flow regime in the pipe from laminar

to turbulent.
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CHAPTER 3

EXPRa1MENTAL RESULTS

3.1 Mean Flow: Steady vs. Pulsating Velocities and Pressure

Fig.3.1a represents tiMe mean velocity profile measured by an

x-wire probe in laminar pulsating flow and normalized by the center-line

velocity. The velocity profile presented was taken at Re-4000, period

- bT=1.34 sea, relative amplitude of bulk velocity U 1/U=20$. In Fia.3.1

three measured turbulent velocity profiles are shown, one of the pro-

files was taken in steady flow at Rez4000, while for the other two the

amplitude of pulsations was varied. No significant difference can be

observed between steady and pulsating time mean velocity profiles wheth-

er in laminar or turbulent flow. This result could be anticipated in

fully developed laminar flow, because of the resulting linearity of the

Navier-Stokes equations, but in turbulent pulsating flow it Indicates,

that the time mean Reynolds stresses are not affected by the oscilla-

tions.

The friction coefficient A , calculated from Daroy's formula

jr/ P AL/DU 2 /
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did not show any difference between steady and pulsating flows for ootn

llinar and turbulent reimes. The measured friction coefficient in

laminar flow was higher by aoout 10o, than the theoretically predicted

value of 64/he. In turbulent flow the value of o'btained is in fair

agreement with the values quoted in the literature for smooth pipes (sce

N.--chlichting ( 1975 )).

A number of factors might have influenced the accuracy at wnici

Awas defined. 1) The accuracy of the measurment of the mean bulk velo-

city, as discussed above. 2)Pressure was measured in the entrance noz-

zle rather than in the developed region of the pipe in order to increase

the resolution of the measurment. Pressure differences at Aez4000 along

tne entire pipe were approximately 2 mm of water in laminar flow ano 4

mm of water in turbulent flow. The measured pressure therefore included

the influence of the developing flow in the entrance region and the dy-

-2namic head component pU /2. 3) it is difficult to null the output nf

the pressure transducer because of relatively low values of mean pres-

sure, as compared to the pick pulsation values.

3.2 Phase hean Values: Laminar vs. Turbulent flow

Pnase-averaged data is obtained from the measurments discussed for

botn laminar and turbulent flow regimes thus providir4g the first two

terms In the decomposition (1.1). Fig.3.2 Shows a typical dependence of
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phase averaged velocities in a tuoulent pulsating flok durini one per-

o. Ine conco~oitant rcfercnce pressure oscillations are snown at tne

top of tne Figure. tacn velocity trace is normalized on tne time .

velocity on tnc center line of the pipe. ine uppermost velocity tracc

corresponds to r/H=O (i.e. the velocity was measurea on the cer.tcr

line) and the oottoo trace represents tne velocity at r/t=C., uuring

a fraction of tne period the pressure at toe inlet of the pipe is lower

than at the exit, pointing to the existence of an acaverse pressure Zra-

dient. The velocity however does not reverse itself at all radial posi-

tious and at all phase angles. Ihe relations between the azplitudes an,.

the phase angles of pressure and velocity oscillations may thus Iced to

isituation wnen at a portion of the periou tne direction o1 tne flo is

opposite to the instantaneous direction of the p*ssurc gradient.

The validity of the assumption that pressure ant vel ity osc ill-

tions are harmonic may be checked by representing tne c semo\ average-

signals in Fourier series. Tne "power" spectra were calculatea, a-A tnL

ratio of the two first coefficients c(2w )/c( w), i.e. for the coefh-

cient of the fundamental frequency and its first harmonic, was deter-

mined. For moderate amplitudes of velocity pulsations, this ratio was

less than 3* thus providing the justification for the harmonic assuop-

tion. At high amplitudes, in turbulent pulsating flow, relaminarization

occurs making the contribution of the second harmonic more significant.

3.2.1 Oscillating Part of the Velocity Profile
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Phase locked velocity profiles can be obtained from the phase aver-

aged velocity records. Since the time mean velocity profiles are inde-

pendent of the pulsations, it is more instructive to plot the oscillat-

ing part of the velocity profile only (i.e. the part represented by the

second term in equation (1.1)). in the laminar case a comparison with

tne theoretical predictions of Uchida is performed. Although at least

1024 points, sampled in each period, made it possible to plot phase

locked velocity profiles at 0.30 intervals, it suffices to plot eight

profiles, with phase difference of 450 for the purpose of the following

discussion.

In laminar flow the shape of the velocity profiles depends only on

frequency parameter a . The oscillating part of the laminar velocity

profiles corraponding to pulsation periods T=0.76 see (a =11.6) and

T=2.4 sec ( a=6.7), respectively, are shown in Fig.3.3a and Fig. 3.3b.

The symbols represent the measured values of the oscillating velocity

while the solid lines represent the theoretically calculated profiles,

normalized and matched to the measured velocity on the center line. The

agreement with the theory is good. It may be seen, that for short peri-

ods of pulsation the flow is quite uniform in the central core of the

pipe at all phases of the cycle. Sharp velocity gradients occur near

the wall. The extent of the wall region is proportional to hw. This

region is referred to in the literature as the Stokes layer in view of

the analogy with the oscillating plane boundary layer which was analysed

by Stokes. For large a the Stokes layer becomes narrow causing the vel-

ocity gradients to increase.



Page 44

In the turbulent flow important parameter is the ratio between the

thickness 6St of the Stokes layer and viscous suDlayer % . If one as-

sumes that the effects of pulsations are limited to the Stokes layer

while the effects of turbulence are excluded from the viscous sublayer

(i.e. from O<yu,/v <5) then for St/6V <1 the pulsating part of the

velocity profile in laminar and turbulent flows snoula oe identical.

This hypothesis may be checked by assuming that the thickness of the

viscous sublayer is equal to 6\=5 \;/u,, and tne friction velocity u.

may for the sake of convenience be related to the mean velocity U by the

power law (see Schlichting p.50b)

2 7/4 1/4
u,= 0.0225U (V /R)

one obtains the following expression for :

6=5 V /u,=60R/Re
7 /8

which renders the desired thickness-ratio between of the two layers

6St/ 6 =Re 7 /8 /60a

At Re=4000 6 /R:.04 thus for T=0.78 sec, 6 St/ 6 :2.0, and the

effects of oscillations on the radial velocity distribution are visible

(Fig.3.4 a). At lower frequencies turbulence penetrates into the Stokes

layer and destroyes It, and the frequency parameter a is no longer im-
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portant resulting in a much more uniform velocity profile (e'ig.3.4 b re-

cordea at '1:2.4 sec, giving 6 a/6 =3.5. in order to reduce furtner

the thickness ratio 6 t/6 tnie ne was reduced to 2900 for T=0.55 sec
It V

resulting in 6St/6 =1.2. Ine measured oscillatory velocity profiles

c
are plotted in iig.3.4 . There is a reasonaole similarity between the

measured turbulent (symbols) and calculated theoretically laminar (solid

line) oscillating velocity profiles for this case.

3.2.2 Radial Distribution of Velocity Phase Angle and Amplitude

The harmonic character of pulsations enables one to represent the

instanteneous velocity by an exponential form (6q.(1.3)), and aleviates

the necessity of describing the temporal and spatial changes in velocity

by plotting a large number of pnase averaged velocity profiles. Two

functions can fully describe the oscillating component of velocity at

the imposed frequency: (i) the amplitude distribution u 1(r); (ii) the

phase angle u(r) relative to tne phase of the pressure oscillations.

In order to obtain these functions, tne phase averaged velocity was

Fourier transformed

u(r,t)aW(r)+ (n (r)oos(nt/T) bn (r)sin(nt/T)) 3.1
n=u1

where N is half of the number of points sampled at each period, and T is

period of pulsations. The coefficients, that describe the oscillations

at the forcing frequency li/T, were then used to find the amplitude fuc-

tion u 1(r)ua(r)+b 'r) and the initial phase angle
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0 (r):arctan((b (r)/a 1(r)). erom tne initial phase of the velocity os-

cillations, tne initial phase of tne pressure oscillations 4as suo-

stracted, giving phase angles u (r) relative to tne pressure.

in tn aosence of viscosity, tne pressure, ocing the only driving

force, is in phase with the acceleration of the fluid. The velocity

lags by 900 benind the acceleration, and thus also lags oenind the pres-

sure. The radial distribution of the phase angle is shown in Fig.3.5

for Re=400 and various periods of oscillations. The solid lines show

the theoretical prediction of Uchida, while the crosses and the trian-

gles give the measured pnase angles in fully developed laminar and tur-

bulent flows, respectively. A good agreement with tne theory was obta-

ined in the laxinar case, witli the cxception of very low frequencies for

which the influence of the entrance region becomes more pronounced, as

it will be described later. The phase lag on the center line in laminar

flow is usually 90° , and it decreases to approximately 450 near the

wall.

In turbulent flow the results appear to be very different. The

frequency parameter a z i w v no longer controls the flow because the re-

levant viacosity becomes some kind of turbulent exchange coefficient C ,

which is orders of magnitude larger than V . The effective frequency

parameters is thus much lower, and the phase lag of the velocity in the

central region of the pipe decreases more quickly with increasing the

period than in the corresponding laminar flow. in contrast to the lami-

nar flow, the phase lag increases towards the wall. 1he qualitative na-
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ture of the resllt .as noticeu oy tianaprian ano u i 15ok,. . ore Ceta-

ile ; explanati-.-, .' this pncnoenon; wnich is r, oen 3imple turoulent

,.iodcl for the- i,:isati4L pipe flo,; will oe (isGuSC. later.

The radial -Ustribution of the phase laz i" velocity in the turbu-

lent flow is both amplitude and mean he dependent. The dependence on

the amplitude of pulsations is rather weaK. 1he radial distribution of

the phase lag for two amplitudes of pulsations at two frequencies is

a ad bpresented in Figures 3.6 and 3.o . For longer periods of pulsations

(T-2.4 sec) changes in amplitude cause no concommitant change in the

central region of the pipe. At higher frequencies (T=1.25 see) the in-

fluence of the amplitude on the phase angle is felt accross the entire

pipe, Nevertneless, a large increase in the amplitude causes a rela-

tively small change in the phase angle (about 3 ).

The depencence of the phase angle on the wean Reynolds number is

more pronounced. A representative viscosity increases with increasing

Re, reducing effective (I. The velocity phase-lag therefore also decre-

ases with increasing Re (Fig.3.7). On the other hand, the viscous sub-

layer becomes thinner with increasing Re, and the radial distribution of

the phase-lag at He=7500 is practically constant.

A qualitative difference between laminar and turbulent pulsating

flows also exists in the radial distribution of the amplitudes of the

velocity oscillations. In laminar flow, the maximum amplitude of the

velocity oscillations occurs in the Stokes layer near the wall, as no-

-_. *- d,
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ticed by ilicndrdson (1927/2o), vhile in turbulent flow the maximum am-

plitude occurs in the center of tne pipe. Ine radial distribution of

the measured amplitudes of velocity oscillations in laminar and turou-

lent flows resulting from identical forcing is snown in Fig.3.8. The

tneoretically calculated amplitudes in laminar flow which were matched

on the center line (Uchida (1956)) are shown also in Fig.3.0 for compar-

i son.

The amplitude distribution of the axial component of velocity in

the turbulent flow is nearly uniform in the central region of the pipe,

out decreases rapidly near the wall. The amplitude of pulsations in

laminar flow also decreases near the wall. Increasing the mean He or

decreasing the frequency of oscillations lead in turbulent flow to more

uniform distribution of the velocity amplitudes for the reasons already

discussed in conjunction witn the radial distribution of the phase lag.

3.2.3 The Influence of the Entrance Region

The disagreement between the calculated and measured phase angles

of velocity at low frequencies may be attributed to the influence of the

entrance region on the flow. To check this further, a second p-essure

transducer was placed 100 diameters upstream the exit of the pipe, (i.e.

400 diameters from the first one, which was located at the entrance of

the pipe). The flow at x/D=400 is considered to be fully developed,

thus the comparison between the two measured pressures could provide in-

formation about tne development of pressure gradient along the pipe.
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phase snift in przssr pulsations was fo,;nd to exist between

tx:cc two positions and is shown in Fig.3.9 as a function of the pulsa-

tior, poriod in botn laminar and turoulent flows. No tiotable amplitude

dependence was found in the measurments whicn were made at mean Re-4000.

At long periods of forcing, uressure at the exit leads tne pressure pul-

sations at tne inlet of the pipe. The phase difference is much nigher

in laminar, than in turbulent flow, and decreases in both cases with de-

creasing period of pulsations.

The calculated values of tne same phase shift are ahown also in

arig.3.9a . The calculations were made for the appropriate values of Re

and I according to the theoretical calculations of ktabek and Chang

(1961) for the laminar pulsating flow in the entrance region of a pipe.

It is clearly seen that the phase snift angles are underestimated by the

theory. These results support the conclusion of Denlson (1970), wno

found that the theory of Atabek and Chang predicts a faster evolution of

the pulsating flow to the asymptotic, fully developed form, than ob-

served experimentally. The conclusion of Denison is based on measur-

ments of pulsating velocity profiles in the laminar entrance region of

tne pipe. It should be noted, however, that qualitatively the predic-

tion is correct: the pressure at inlet lags behind the pressure in the

fully developed region, and the phase difference increases with increas-

ing the period of pulsations. The influence of the entrance region in

the turoulent pulsating flow is much weaker, than in laminar flow, and

phase differences are therefore less pronounced.
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At higher frequencies (T(0.7 sec), the sign of the phase difference

onanges. Tne finite value of the sound velocity becomes important at

these frequencies, and the pressure downstream lags behind the changes

in upstream pressure as predicted in Section 2.3. The measured phase

differencies are slightly higher than the theoretically calculated. The

discrepancies may stem from the finite angular resolution in the experi-

mental setup (about 0.3 for each transducer) and the hydraulic approxi-

mation, used in the theory. it is interesting to notice, that there is

practically no difference in the measured pressure phase lags between

laminar and turbulent pulsating flows at tnis range of frequencies (T(

sec).

An additional way to check the influence of the entrance region is

to compare the amplitudes of the pressure pulsations at different stre-

amwise locations. As it was mentioned earlier, one transducer was

placed at inlet of the pipe which is 500 D long, while the second trans-

ducer was placed 100 D from the exit. Thus for a linear distribution of

pressure along the pipe the ratio of the pressure amplitudes should

therefore be equal to 0.2. This ratio would be reduced as a result of

the influence of the entrance region. The accuracy of measuring the am-

plitude is much better than the accuracy in measuring the absolute stea-

dy pressure because the former is independent of the error in the zero

setting.

Fig.3.9b showes the measured ratio of the pressure amplitudes in

both laminar and turbulent flows. There is no significant difference
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oetween these flow regimes; the results suggest, however, that the in-

fluence of tno_, entrance region diminishes with increasing frequency, it

is worth noting that the effects of the entrance region are much

stronger on the steady, than on the oscillating parts of the flow. This

stems from the fact that the oscillating velocity profile in fully de-

veloped laminar, or turbulent flows, does not differ significantly from

the slug-type velocity profile, which enters the pipe from the settling

chamber. The theory of Atabek and Chang does not predict notable nonli-

nearity in the distribution of the pressure amplitude along the pipe.

3.2.4 The Relation between the Pulsations of Pressure and Flow Rate

The mechanical power W, neccessary to push the flow at a rate Q

through a pipe in which the pressure drops by Ap is proportional to the

product Q Ap. In pulsating flow the power is time dependent, and the

amplitude of power oscillations is determined by the amplitudes and

phase relations between the pulsations of the pressure and flow rate:

Wzp1 Qloos 0 q in order to compare the amplitudes of power pulsations in

laminar and turbulent flows the relation between p I and Q1 has to be

known.

Fig.3.10 shows the dependence of the measured amplitude of pulsa-

tions of bulk velocity on the amplitude of the imposed pressure oscilla-

tions for two frequencies. Only small differences can be noticed in the

responce of the velocity amplitude to the imposed forcing in laminar and

turbulent flows.The bulk velocity amplitude is proportional to that of
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pressure, and tne difference between the slope of the laminar and the

turbulent dependence is within the experimental error. For a given am-

plitude of pressure pulsations tne amplitude of the bulk velocity is

nigner at lower frequency as it follows from the expected dependence of

g on the frequency (see Fig.2.2).
q

At a given frequency of pulsations only the phase difference

can contribute to the difference in the amplitude of power pulsation3

between the laminar and the turbulent flows, in laminar flow tne phase

angle does not differ appreciably from 900 (it changed from about b5° at

T=0.56 sec to about 760 at T=2.4 sec). In the turbulent flow, changes

in frequency cause a more significant decrease in the phase lag of the

flow rate behind the pressure, as it qualitatively can be concluded from

Fig.3.5. At high frequencies, however, there is only a small difference

in *q between laminar and turbulent flows; at T=0.56 sec it is about

0 in both cases. In turbulent flow *q decreases fast with decreasing

frequency (at T=2.4 sec q=50 ), and cos *q therefore oecomes larger,

than in the corresponding laminar flow.

There is thus no significant difference in the amplitude of the

power pulsations between laminar and turbulent flows at high frequen-

cies, where the oscillating velocity prifiles are very much alike (see

Section 3.2.1). Decreasing the frequency increases the amplitude of the

flow rate for given pulsations of pressure and the amplitude of the

power pulsations grows in both laminar and turbulent flows; the growth

in the turbulent case is faster because of stronger dependence of q on
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frequency.

3.3 Turoulent Characteristics

There is no doubt, that a lot of information about the structure of

the turbulent flow is lost by the conventional and phase looked averag-

ing procedure. In Fig.3.11 the instantaneous axial u and radial v velo-

cities, measured during a single period are shown and compared with the

phase averaged values; the dependence of the pressure on time is shown

in the upper curve. Several conclusions could be drawn from this

Figure: 1) the phase averaged value of the radial velocity vanishes, so

there is no Reynolds stress component, connected with the orderly pul-

sating part of flow as expected in the fully developed pipe flow; 2)

the intensity of radial velocity fluctuations is of the same order of

magnitude, as the intensity of axial velocity fluctuations; 3) there is

some evident dependence of the turbulent activity on the phase of im-

posed oscillations which is expressed in the changes in both amplitude

and frequency of the turbulent velocity fluctuations (see also

Fig.3. 12).

The turbulent activity becomes increasingly dependent on the phase

of forcing at higher amplitudes of the pulsations. The oscillating part

of velocity during a single period, measured by the hot-wire rake and

compared with the signature of the pressure oscillations, is shown in
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r i.o ,12. A prtia1 ip-minarization of the flov is ooserved during tne

tine corresponoin,1 to trie 7init.ui velocities pro~uced by t.e forcing. i

"'Nrea~down" to occur -t a tlie corresponming to the maimum in-

stanteneous vlocity, wn:n tnz amplitude of turoulont fluctuations in-

creases quite sudccnly. te decrease in tne amplitude of thxe fluctua-

tions on the dcelerating portion of the cycle is relatively gradual.

At even higher amplitudes of pulsations the flow becomes completely

laminar. At these amplitudes the instantaneous Re falls below its crit-

ical value during a fraction of the period. Imnen the duration of the

flow at the suocritical Re is sufficiently long, a complete relaminari-

zation occurs. The mean velocity of the flow at He=4000 is about 1.o

m/sec, so that even at lowest frequency of pulsations (T=4.I see) each

fluid particle remained in the pipe for several periods. The flow is

naturally laminar at he=4000, and tne transition to turbulence was trig-

gered artificially oy a perturbance, which was purposely placed at the

entrance to the pipe. Thus if the flow relaminarizes further downstre-

am, it will remain laminar throughout the pipe. Ihis effect was noticed

by a number of investigators, cited earlier (e.g. Sarpcaya (1966) and

hamaprian and Tu (19o0)).

3.3.1 The intensity of Velocity Fluctuations

The distribution of the time averaged, root-mean squared, turbulent

fluctuations in the axial and radial directions for steady and pulsating

flows is compared in fig.3.13. The velocity fluctuations are normalized
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oy the frition vclocity u. wnion was o.lculated from tne time mean

valuT of the pr( ssure drop (u =:l.I cm/sec at ne-4OO). There is no

significant difference oetween time mean values ofu'2 and4v, 2 in steady

and pulsating flows. i small but consistant decrease in v ' 2 can be no-

ticed (Fig.3.13 ), with increasing amplitudes of pulsations. The dis-

trioution of/ and/-7is in good agreement with the results, obtained

for steady turbulent pipe flow by Laufer (1954) and by wygnanski and

Cnampagne (1913).

r'asurments of Laufer were made at he=500GO, wnicn is higher by

order of magnitude, than the prevailing Re used in the present investi-

gation. Nevertheless, the comparison of the normalized results is still

possible, because W%': values of the turoulent velocity fluctuations nor-

malized by tne friction velocity are practically independent of Re. On

the other hand, u. is dependent on He, and its instanteneous values

change in the pulsating pipe flow. Thus, u' and v' are phase dependent.

This conclusion was reached by examining the recorded velocity depen-

dence on time, as shown on fLgures 3.11 and 3.12.

he phase dependence of the M4S values of velocity fluctuations is

plotted in Fig.3. 14, after tne calculated data was smoothed slightly by

a running average procedure. The smoothing was necessary because of re-

latively short lengtn of the ensamble used in the averaging process (200

measured data points at each phase angle). A number of conclusions can

be drawn from the examination of this figure: 1) the RMS values of

axial and radial velocity fluctuations are phase dependent; 2) the
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phase angie of the intensity of toe axial and radial velocity fluctua-

tions is not iaentical; 3) the pnase dependence of <u' 2> and /<v'2 >

is obviously non-harmonic, the growth is notably faster than the decay,

as it was noted previously while examining the instanteneous velocity

records over a single period.

in order to compare the radial dependence of the phase of t<u*2 >

and T with the phase of the mean velocity, it was decided to limit

the analysis to the fundamental frequency only, inspite of the

non-harmonic behaviour of this ensemble averaged data.

Figure 3.15 shows the phase lag of / <u' 2> behind the pressure and

compares it to the phase of the mean velocity, for three different fre-

quencies of pulsations Out approximately for identical amplitude of the

bulk velocity. The higher the frequency, the larger is the phase lag of

/<u' > behind tne fundamental oscillation of the flow velocity, It is

interesting to note, that the phase angle of Au' 2> changes signifi-

cantly with the change in the radial position, being maximum at the

center of the pipe, and attaining a minimum in the region corresponding

to the maximum turbulent production. At lower frequencies the pulsa-

tions (r>2 sea) /<u > at r/f=0.7 may even lead the phase averaged vel-

ocity. in Fig.3.1' the phase distributions of <u> and /<u' > are com-

pared for a constant frequency of forcing (T=2.4 sec) and the Reynolds

numoers ranging from 3300 to 1500. The phase difference oetween <u> and

,(<u > decreases with Increasing be; the location of minimum in the

pnase difference approaches the wall at high values of the Reynolds
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number.

The phase angle oft Av< > is practically independent of the radial

position (Fig.3.1o). The phase-lag of Av' > behind pressure is very

cioie to that of /<u' > in tne center of the pipe, out it does not de-

crease at larger r/i. The magnitude of tne phase-lag in /<u' > and

Av"-> relative to the pulsating velocity depends on the amplitude of

the velocity pulsations, but the radial distribution of the phase is

unaffected.

The qualitative difference in the phase benaviour of /<u'l > and

<v2 > can be explained by considering the oudget of the turbulent en-

ergy (see hinze, p.325). The rate of change in the intensity of the

longitudinal fluctuations (i.e. a<u' 2>/ t) is governed by the produc-

tion term -<u'v'> B<u>/ ar, so that simultaneous existence of the oscil-

lating velocity gradient and Reynolds stress is necessary for the pro-

duction, as it was pointed out by Rotta (1962). The temporal change in

the phase-mean velocity gradient produces a most pronounced change in

/u' > at the location where the product of the oscillating Reynolds

stress with 3<u>/ 3r attains maximum. The phase difference between <u>

and Au' 2> is thus minimal in the region of maximum production and oc-

curs approximately at r/R=O.7 at time-mean He=4000; at higher values of

Re the location of the minimum in the phase difference approaches the

wall. Once generated, the longitudinal velocity fluctuations are trans-

ferred acoross the pipe by energy redistribution mechanisms, which are

connected to pressure fluctuations. The phase lag between <u> and
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ihn radial velocity fluctuations do not extract energy directly

from the mean flow but rather from <u' 2> through pressure redistribution

terms. Thus the phase-lag in / <v" is similar to the phase-lag of

V<u'> in the center of the pipe, out the pnase-lag of / V1 > is inde-

pendent of radial location.

in addition to the phase oehaviour of the M6 of the turbulent vel-

ocity fluctuations, the racial Jistrioution of tncir amplitudes was

n as well. ihe dependencies of tne dimensionless amplitudes of

/<u 2>, normalized by the amplitudes of tne pulsating oulK velocity for

three periods of forcing, are plotted in fig.3.17. increasing the fre-

quency of the pulsations results in higher dimensionless amplitudes of

,I- > A large change in the amplitude of the bulK velocity produces

a small growth in the amplitude of A<u' >. The data presented in

Fig., .1b reflects a change of approximately 300) in the amplitude of the

oul velocity pulsations which lead to a cnange of 20, in the dimension-

less amplitude of /<u' >.

in order to check the non-narmonic benaviour of /<u > and /<v' >

the ratio of tne first two power spectral coefficients c(2 w)/c( W) was

calculateJ for tne phase averaged XMz values. Ihe first coefficient
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c(w) corresponds to the fundamental frequency of pulsations, while

c(2w) to its first harmonic. No significant frequency or radial depen-

dence of c(2 w)/c( w) was observed. This ratio was about 18% for

U1/=15%, and increased to c(2w )/c(w )=40% at U1/U=35%. The

non-harmonic behaviour of /<v' > was similar. The phase dependence of

Au' > is becoming more harmonic when Re is increased. At Re=5800 and

Re=7500 c(2w )/c(w ) is less than 5% at all radial locations. The con-

clusion thus can be made that the non-harmonic behaviour of the turbu-

lent characteristics at Re<4500 is caused by the onset of the relaminar-

ization process at low instanteneous values of the bulk velocity.

3.3.2 Reynolds Stresses

Time averaged Reynolds stresses -u'v' which were measured by an

x-wire, are essentially independent of the flow pulsations (Fig.3.19),

as is-the case of the RMS values of turbulent velocity fluctuations.

This conclusion was inferred earlier from the similarity of time mean

velocity profiles (Section 3.1). The fact that the time mean pressure

drop along the pipe is independent of forcing also indicates, that the

pulsations have nearly no effect on the mean Reynolds stresses.

The radial distribution of the oscillating part of the Reynolds

stresses for two amplitudes of pulsations is shown in Fig.3.20. The

measured values of <u'v'> were rendered dimensionless when divided by

the amplitude of the pulsations of u. which in turn were deduced from

the oscillatory component of the pressure drop. Normalized in that way,
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the. aplitudes ;jf the Reynolds stress appear to be independent of the

amplitude of tnc pulsating buliK velocity. Wualltatively, the radial

distribution of tac amplitude of <u'v'> resembles the time mean u'v' de-

peridence, boti 1row linearly witn the radius in the central region of

tne pipe, but the pulsating <u'v'> attains its maximum value closer to

the wall, than the time mean Reynolds stresses.

The phase lag of <u'v'> behind pressure (Fig, 3.21) is similar to

the phase-lag of V<u'7> at comparable amplitudes and radial positions

(compare with Fig.3.1b). The phase-lag of <u'v'> is minimal not far

from the wall, at O.7<r/R<O.6; with the location of minimum depending

on the amplitude of the forcing. The resemblence between the radial

distribution of the phase-lag of u'- > and <u'v'> stems from the fact

that u'v' fluctuations can extract energy directly from the mean flow

through the production term -<v' 2> 3<u>/ 9r (Hinze p.S25). The minimum

in the radial distribution of the phase angle of <u'yv> is much less

pronounced than for the longitudinal velocity fluctuations, because of

the uniform distribution of both amplitude and phase angle of/<'->.

The Reynolds stresses, as the RMS values of velocity fluctuations,

are not ohanging harmonically in tine. The "power speotrum" of the

phase averaged (u'v'> was calculated, and the coefficients, correspond-

ing to the fundamental frequency of pulsations and its first harmonic,

were compared. Their ratio was found to be similar to that, obtained

M_
for Au >, I.e. about 202 when the amplitude of forcing was UI/Uz20$

and about 40b for UI1/Uu35%.
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3.3.3 Spectral Analysis

One of tne interesting questions, concerning turoulent pulsating

pipe flow, is the interaction of turbulence with the velocity oscilla-

tions generated by forcing. Cheng (1971), for example, states, that

there Is a strong amplification of the turbulent fluctuations at the

frequency of the pulsations.

In order to check the spectral distribution of the energy of turbu-

lent fluctuations at frequencies corresponding to the frequency of the

imposed oscillations, the sampling period was increased to eight periods

of forcing. The data was acquired in the following way. The first

trigger pulse recognized by the computer initiated the record. From

that point in time only every 8-th or 16-th data point was stored after

the corresponding phase-averaged value of the velocity was substracted

from it, thus leaving only the fluctuating turbulent component of the

instanteneous velocity. One hundred and twenty eight (128) data points

were obtained for each period, giving a total of 1024 points per record.

The power spectra were calculated for each record and averaged over the

number of records used.

A log-log plot of the spectra at 9 radial locations is shown in

Fig.3.22a for unforced flow; and in Fig.3.22 and Fig.3.220 for forcing

at a period equal to Tal.34 seo and at two amplitudes of oscillations

U1 /6m20% and U1/"Uu35%. The general shape of the spectra of the steady

and pulsating flows Is very similar. Forcing produces a strong peak In
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tne spectrua at the frequency of the pulsations in tne nonstationary

flow. in tne zertral region of the pipe even tn second and the third

,iarmonic of tnc pulsating frequency are visible. This confirms, at the

first sight, tnt Qonclusion of Cneng aoout the increase of the turbulent

energy at the frequency of the pulsations. 1o check the matter further

tht same type of measurment was repeated in laainar pulsating flow at

identical flow conditions; the ensued spectra had identical peaks at

the frequency of the pulsations and its harmonics. Since the Intensity

of these spectral peaks relative to the background was identical to the

intensity measured in turbulent flow and yet the flow was laminar, error

in the processing of data was suspected.

As explaincd in Section 2.5, the sampling frequency was calculated

by the computer in order, that 1024 or 208d data points would be sampled

per cach channel per period. in reality, however, the desired number of

sampled data points per period was not precisely achieved. The reason

for the discrepancy stems from the fact that 11 channels were recorded

at a total sampling rate of approximately 15 Kkz. Inus, about 70 Usec

elapsed between the consecutive data points while the resolution of the

clock being only JIsec, resulted In a maximum possible error in the

sampling frequency of approximately 1.51. The sampled period might have

been either longer or shorter than the real period of pulsations, re-

sulting in a disoontuinity at the end of each record. The absolute

value of the discontinuity was not large, and it could not be noticed

from oOserving the velocity signature on a "Tetronix* screen, but its

periodicity caused the generation of the spectral peaks discussed in

.n n RWrffl nm



Page 63

conjunction with Fig.3.22 at the frequency of pulsations and its harmon-

ics.

txamination of the low frequency spectra excluding the above menti-

oned spikes leads to the conclusion, that there Is no significant inter-

action between the imposed oscillations and the turbulence. Thus the

conclusion of Cheng might be in error.

In order to obtain spectral information at higher frequencies, the

spectra of the axial and radial velocities during a single time period

(T=1.34 sec) were calculated and averaged over 100 cycles. The spectra

at two radial positions are shown in Fig.3.23: one on the center line

(Fig.3.23a ) and one taken at r/RaO.73 (F18.3.23 b). The lowest frequency

of the spectra corresponds to the frequency of the pulsations, i.e.

f=0.74 Hz.

The value of the leading coefficient of the axial velocity compo-

nent power spectrum which corresponds to the forcing, frequency grows

witn increasing amplitude of forcing, but the rest of the speotrum Is

not Influenced by pulsations. The changes at the frequency of pulsa-

tions are assumed to result from the experimental error discussed ear-

lier in the case of long time spectra. Turbulent energy is increasing

towards the wall, as expected; most of the turbulent energy Is oonta-

ined in frequencies lower than 100 Hz; the value of power spectrum

coefficients at frequencies higher, than 500 Hz, is at least four orders

of magnitude below the coefficients corresponding to the energy contain-
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ing eddies, so tnat the sampling frequency of aoout 1.5 Grz, used in tke

experiaent, iz aaequate.

'in spectra in Fig. .2 are plotted in log-log coordinates. 'nis

presentation is necessary because of the wide range of parameters, but

it conseals the relative contribution of different frequencies to the

total turbulent energy. The connection between the spectral coeffi-

cients c(f) and turbulent energy 9 may be presented in the following

fora

ExJ c(f)df=J f~c(f)d(logf) 3.2

it is clear fron this presentation, that when logf is used instead of

frequency, the contribution to the total turbulent energy at the fre-

quency f is proportional to flc(f). The Fig.3.23 gives the spectrum of

the turbulent energy of the longitudinal velocity fluctuations on the

center line of the pipe, as given In Fig.3.23 a , but instead of logc(f)

the logarithm of the product feo(f) Is given on the ordinate. Fig. 3.23d

presents the spectra of radial velocity fluctuations, calculated In the

same wy.

it can be seen from the Figure, that the main contribution to the

total turbulent energy of axial velocity Is at frequencies corresponding

to a btrounal number based on mean bulk velocity U and diameter of the

pipe D (StafD/U) which is of the order unity (Stz1 at f=55 Hz). The

frequency of energy containing eddies increases near the center of the
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pip. lae c;-,ir!.ctcristic frequency of t.. -nFry .3ontainiri ecIie.i in

tr.e ra,.i.L di. zt~ox: iz aoout a nd, and seccs tc; o 1,;s aep-enent on

rz"A l position.

witn po.er 3pectrum c(f) Known, dissipation spectrum f2c(f) and

dissipation integral f f2c(f)df can oe calculated. Ine log-log plot of

dissipation spectra on the center line of the pipe for unforced flow and

for two amplitudes of forced pulsations at T=1._4 see (UI /=20) and

U /I=35) is presented in Fig.3.25. The maximum dissipation region is

approximately at f=150 Hz. The difference between the regions of energy

containing eddies and maximum dissipation is not very large, as can be

expected for low meynolds numbers considered. The dissipation spectra

are practically ineffected oy pulsations, and tne slight increase in tae

value of the dissipation integral with Increasing results from changes

in spectra at the nigh frequency (f>200 Hz).

The spectra on figures 3.23 give information which is averaged over

the wnole period. It was mentioned earlier, however, that in the pul-

sating flow the turbulent activity is phase depenatnt. it was decied

tnerefore to divide each period into eight equal parts, and calculate

the spectrum for eacn part separately. t.aoh record thus included 256

measured data points and thus no spectral information could be octained

about frequencies lower than 6/Tu6 Hz. The spectral resolution, which

depends on the duration of the total record is also reduced by the suD-

division of the period. Figures 3 .24a and 3 .24b show three out of eight

possible spectral distributions at the initial pressure pnases of go
°0
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150 and 270 °  ,; for two amplitudes of bulmL velocity pulsations (13.5

orl r 4zi. i i i, on Fig.3.240). !he phase angles Chosen snow tne

00mKinum deviation tiO ° and 270 ) of tne short duration spectra from long

ti 2c ver ::i spetrum wnian also resembles the spectrum at pnase angle

10j° . At large aaplitudes of pulsations, the differenoe between the

specral coefficients measured at *=90 and #=270 for a given frequen-

cy nay be as large as decade. It is intersting to note that effect of

pulsations on the spectra is most pronounced at high frequencies (20

hz<f<100 Hz) rather than in the immediate neighbourhood of the forcing

frequency (i.e. at f"-I Hz).

To evaluate the influence of forcing on the energy containing ed-

dies same spectra were plotted once again in the coordinates log(foc(f))

vs. log(f) (Figures 3 .24 c and 3 .24 d). t transpires that in addition

to the effect on the amplitude of the turbulent fluctuations, the intro-

duction of forcing also effects the energy containing eddies, as it was

noticed from examining a single event in Section 3.3. At higher instan-

teneous Reynolds numbers (with a certain phase lag) the entire spectrum

seems to shift towards higher frequencies which are appropriate perhaps

to the instanteneous Reynolds number.

This behaviour is even more pronounoed on the short duration dissi-

pation spectra, calculated from the paer spectra and presented in

Fig.-3.26. The values of the dissipation spectral coefficients differ by

two orders of magnitude at different initial phase angles. The region

of maximum dissipation also depends strongly on the phase angle.
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3.3.4 Dissipation time scale

The multiple spectra, presented in the previous Section, show that

the frequency of turbulent fluctuations is phase dependent. They can-

not, however, provide "instanteneous" information about frequency, but

rather an average over 1/8 of the period. An alternative way to obtain

phase looked information on the characteristic frequency of the turbu-

lent fluctuations is to calculate the ensamble averaged values of the

Eulerian dissipation time scale E, defined as

f EZIT z(Su'/at) 2/2u'I

(hinze, p.45). Although Townsend (1956) was very sceptical about the

phisical meaning of the so called dissipation parameters, they still may

serve as an indicator defining the most rapid turbulent fluctuations in

the flow.

The radial distribution of time averaged values of f for three am-

plitudes of pulsations at Tal.34 sec is presented in Fig. 3 .27a. No sig-

nificant influence of pulsations can be noticed up to the maximum ampli-

tude used (i.e. U1 /1 30%). The average f attains a maximum on the

center line of the pipe. The obtained maximum value of f 9 (about 1100

Hz) supplies one more indication, that the sampling frequency chosen in

this investigation (about 1500 Hz) is quite adequate. The value of time

averaged f E increases sharply with decreasing distance from the wall.

-- .. m ~ kn m i m sil s I n • I
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The radial distribution of the amplitude of the oscillations in

<f E> (see F19.3.27 b ) resembles the distribution of the amplitude of

phase averaged velocity oscillations. in the central region of the pipe

the radial distribution of fS is approximately uniform, as in the case

for the amplitude of <u>, the difference occurs in the vicinity of wall,

where the reduction in the amplitude of f. is steeper. The amplitude of

oscillations in <t 3 > is roughly proportional to that of u>.

The radial distribution of the phase lag of <E> behind the pres-

sure (Fig.3.27C ) resembles that of u(r), with the phase lag increasing

towards the wall. The phase difference between <u> and <fE> is about

200 at all radial positions, and is practically independent of ampli-

tude.
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CHAPTER 4

DISCUSS1ON AND THEORETICAL CONSIDERATIONS

4. 1 The balance of forces in a pu2 sating flow

In a steady fully developed pipe flow there are two types of

forces, acting on every element of fluid and balancing one another:

pressure forces, resulting from favorable pressure gradient in the di-

rection of the flow, and shear forces, which are caused by friction on

the walls and oppose the motion. In the case of non-steady flow a third

force is added: an inertia force. At any instant, all three forces

have to be balanced, forming triangle of forces for each frequency in

the Fourier expansion. The leading term in the expansion is considered

and the presentation of (1.3) is used (e.g. the analysis refers to the

frequency of the pulsations only).

Eq.(1.10) may be rewritten in the following way:

a<u> 1 p I - (r<T(r)>)
where < x pr th r< Cr) >) p. t

where CT> iS the enseible averaged pulsating part of the shear stress
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<T> z U 3 - p<u'v'> 4.2

Integrating Eq.(4.1) from the center-line to another radial position r

yields after some manipulation

1 Jpr'<u(r')>dr' = - + <t(r)> 4.3
t°  r

The integral an the left hand side represents an instantaneous rate of

mass flow through the central region of the pipe up to the radial posi-

tion r, and will be designated further pQ(r). haking use of Eq.(1.3)

and considering the fundamental frequency only, the differential equa-

tion (4.3) reduces to an algebraic expression

Cr -iq (r) 1 3p1  Tl (r) iOT(r)
.PQ1 (r e

r2 2 3x r

6q.(4.4), being a complex one, represents in fact two independent equa-

tions, for the real and for the imaginary part. When tne experimental

information about flow velocities and pressures is available, Eq.(4.4)

contains two unknown values: the amplitude of the shear stress T I and

its phase angle 0T. Both values can thus be determined from equations

(4.4).

An alternative approach to Eq.(4.4) is to regard it as a vector

equation representing a balance among three vectors: QzQ1 (r)exp(-i#q,

Pa0.5ap1 /ax and _ u(T1/r)exp(iO.), where fq and T represent the phase

angles of mass-flux and shear relative to the pressure. In turbulent
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flow the mass flux-lags behind the pressure by an angle ranging from 00

to 900, depending on frequency and mean Reynolds number (see Sections

3.2.2 and 3.2.4). The fact that the mass flux term on the left hand

side of Eq.(4.4) is multiplied by I means that an angle of 900 is added

to this phase angle in order that the mass flux term on the left hand

side of Eq.(4.4) will lead the pressure term. The following sketch

shows qualitatively the relevant vectors and phase angles.

+ I

r2

It is seen from the sketch, that both amplitude T, and phase angle T of

the shear stress vector are critically dependent on the relative length

of P*and and on the phase angle between them, consequently even a re-

latively small error in one or both quantities which are measured exper-

imentally, can lead to a significant error in the shear stress vector.

In laminar pulsating flow the radial distribution of the shear

stress has been calculated theoretically (Uchida (1956)), and the solu-

tion for the amplitude of (T >, normalized by the length of the pressure

vector, is represented by a solid line in Fig.I.1 for a:9. (T:1.3

sec). The slope of the curve in the central region of the pipe is very

small, and it differs notably from zero only inside the Stokes layer.

This behaviour of the radial dependence of T I/r in the laminar flow
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follows from the fact, that in the central region of the pipe the accel-

eration term is practically in phase with pressure, and both terms oal-

ance one another. The viscous term becomes more important in the tokes

layer, vnere the radial gradients in the amplitude and pnase of velocity

pulsations increase (iig.3.d and rig.3.5). The increased amplitude of

the velocity oscillations renders a longer acceleration vector; the

changes in the velocity phase-lag increase the angle between the accel-

eration vector and the pressure vector; thus the shear stress term

which closes the force triangle increases. Aear the wall the amplitude

of velocity oscillations decreases causing the acceleration vector to

become shorter than the pressure, and the phase lag of the shear stress

0behind the pressure tends approximately to 45 The following sketch

shows qualitatively (but not to scale) the force triangles in laminar

flow at three radial locations: in the central region, in the Stokes

layer and at the wall. +T
T

"r /

r 2

center(r/R=O. 24) Stokes layer wall

(r/R=0.85) (r/R=l)

The relative length of the shear stress vector in laminar flow is

small with the exception of the wall region and consequently the pres-

sure and acceleration are collinear and equal. This identity provides

an opportunity to check the consistency of the measurments and correct

'i
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the pressure vector which in all probability contains the largest error.

The measured values of P and i iQ/r in tne central region of the pipe

in laminar flow were equated, and a coefficient of the correction for

the length of tne pressure vector was determined. This coefficient was

used to correct the length of the pressure vector in the turbulent flow

at otherwise identical parameters (i.e. Re, T, piston displacement).

The value of the corection coefficient was usually about 1.15. It is

worth noting here, that the shear stress term appears in the form T/r.

This term does not vanish in the center of the pipe, contrary to the

-4- shear stress itself, and therefore there is no way to correct the rela-

tive length of the other two experimental vectors using the known value

of T=O in the center of the pipe.

The shear stresses calculated from Eq.(4.4) with the aformentioned

correction factor for the pressure can be checked experimentally by com-

parison with the measured Reynolds stresses. Fig.4.1 represents the

calculated radial distribution of T 11Pi normalized by the modulus of the

pressure vector P, as compared with the theoretically calculated laminar

distribution. Four different amplitudes of pulsations are shown in

Fig.4.1 for the period T=1.34 see.

An identical way of normalization was used in Section 3.3.2 for the

radial distribution of the amplitudes of pulsations of Reynolds stresses

shown in Fig.3.20. The vector diagrams provide a reason for it. As it

was mentioned in Section 3.2, the amplitude of velocity pulsations is

proportional to the amplitude of pressure for both laminar and turbulent
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flows, as long as this amplitude is not too high, u is practically in-

dependent of amplitude. This implies, that the force triangles for dif-

ferent amplitudes of pulsations at a constant frequency are similar, and

thus the amplitude of pulsations of the shear stress is also proportion-

al to the pressure.

It is seen from Fig.4.1, that this way of normalization leads to

radial distribution of T which collapse fairly well on the same curve

provided the very large amplitudes of forcing are excluded (U1/U=35)).

The comparison of the measured Reynolds stress with T callculated ac-

cording to Eq.(4.4) is fairly satisfactory. In the central region of

the pipe a<u>/ Br=0 (see Section 3.2.1), thus <T >/P =-<uv'>, yet the

measured <u'v'> I are consistently below T,.  The maximum discrepancy

however, is less than 20% (Fig.4.1) thus giving an estimate of the error

in the use of Eq.(4.4). If one does not correct the pressure vector the

discrepancy between the measured and calculated T, incresases slightly

without affecting the qualitative results.

Fig.4.2 presents the radial distribution of the amplitude of the

pulsations of the shear stress, normalized in the same way as in the

previous Figure, for four different frequencies. The relative lengths

of the shear stress vector and of the pressure vector are obviously

strongly dependent on frequency. At low frequency the length of T at

the wall nearly equals to that of 1, as it is in steady flow, and the

contribution of the acceleration term is manifested mainly in the phase

shift between T and I. lt is natural to assume, that at frequencies
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lower than the ones measured tnis phase lag eventually vanishes, and the

behaviour of tne pulsating turbulent pipe flow aocs not differ from the

steady flow. Inc length of T relative to tne amplitude of the pressure

pulnations ecreases with increasing frequency, and the behaviour of the

flow in the central region of the pipe resembles the laminar case, where

the influence of the shear stress is negligible.

It should be noted however that the amplitude of the shear stress

does not change notably with frequency when normalized by the flow rate

amplitude QI rather than the pressure. This is also the case for the

RMS values of the longitudinal velocity oscillations (see Fig.3.17). it

may be concluded that the oscillations in shear stress and PMS values of

velocity fluctuations are functions of the oscillating Reynolds number.

There exists a phase difference between the oscillations in mass
flux and in shear stress. The phase lag of <T >*T as calculated from

the iq.(4.4), shows only slight dependence on amplitude (Fig.4.3), with

the possible exception at very high amplitude of forcing (U1/U=35). In

the latter case *. increases notably. The dependence of the phase angle

on frequency is considerable (Fig. 4.4). The phase angle *T calculated

from Eq.(I.4) and the angle *ur which was deduced from the measured Re-

ynolds stresses are in very good agreement (Fig.4.3). The difference

between the two quantities is less than 100. The phase angle between

the pressure and the shear stress increases with increasing frequency.

OT decreases near the wall, this decrease is much more pronounced at

higher frequencies.
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The following sketch (which can not be drawn to scale) shows rela-

tive length and directions of the relevant vectors at a given radial lo-

cation (r/R:O.ol) for three frequencies (all vector moduli are normal-

ized by the modulus of P), as nalculated from experimental data in ac-

cordance with Eq.(4.4):
T=0.78sec T=1.34sec T=4.48sec

0.34 050
16.5 ~102.20

1.32 1.21 0.86

1 23.70 +

• --.- 
.57 3

T T

Increasing the frequency results in smaller phase angles between the

pressure and the acceleration vector. The length of Q relative to the

pressure decreases with increasing frequency (in analogy to the behavi-

our of cqk a) in laminar flow (Fig.2.2)), but the product wQ1 which

corresponds the the acceleration vector increases with increasing fre-

quency. Thus, while examining the instanteneous force balance, T oeing

related to the acceleration should be compared with a characteristic w

term, while in examining the Influence of forcing on the turbulent in-

tensities or Reynolds stress should be compared with a, characteristic

amplitude of velocity and hence with QI" The phase lag of T behind P

Increases with frequency, as shown in Fig..4.

At a given radial position there is no practical difference between

(T )/pand -(u'v'>. The phase angle *. of ( T> may thus be considered to

be equal to the phase angle of the Reynolds stresses. The phase lag of
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tne veynold stresses behind the mass flux taus ranges from nearly zero

it low frequencies to approximately 00 at T=0.7o sec. ht nigh frequen-

cies Heynolds stress is nearly in antiphase with the acceleration vec-

tor. jince the radial dependence of the phase angle of the longitudinal

velocity fluctuations is similar to the dependence of the Reynolds

stresses (because of production term), It follows from the force trian-

9les, that at high frequencies the acceleration is associated with re-

duction in the turbulent activity. This fact is widely recognized In

the literature (e.g. Warasiaha and Sreenivasan (1979)) and a causality

of relaminarisation by acceleration was suggested, but the present ex-

perimental results suggest a different interpretation.

At long periods of pulsations (Tz4.46 sc), the rate of change of

the oulk velocity is small enough for the turbulent structure to accomo-

date itself to the instanteneous value of the phase-locKed average velo-

city distribution. The changes in the turbulent characteristics of the

flow are therefore In phase with the mass flux and with the pulsating

Reynolds number. The situation resembles laminar pulsating pipe flow,

where at a<1, the velocity at any Instant has a Poiseuille distribution

corresponding to the instanteneous value of the pressure gradient. The

period of pulsations for wiioh the turbulent structure respond. to the

instanteneous mean flow (Tu14.5 see) is still very short in tems of the

frequency parameter 0' 14.9 rather than 1). Thus the characteristic

responce time of turbulent fluctuations to a change in mean flow, Is

muoh shorter than the time needed for the laminar flow to aooomodate It-

self to the changing pressure gradient.
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When the frequency of pulsations increases, the phase lag of the

mass flux relative to the pressure tends to 900, and all three vectors

in the force triangle tend to be collinear. This implies that the Rey-

nolds stresses lag behind the mass flux by 900 and cannont exceed this

angle under any condition. At high enough frequencies the turbulent ac-

tivity is minimum when the acceleration is maximum because the relative

contribution of the shear stresses to the total balance of forces decre-

ases. The "laminarizingm effect of the acceleration is thus obtained in

the limiting case of very rapid oscillations.

4.2 The Eddy Viscosity Model in the Time Dependent Flow

In pulsating pipe flow amplitudes and phase angles of the oscillat-

ing pressure, velocity and shear stress are mutually dependent.

Therefore the qualitative difference in the radial distribution of u

in laminar and turbulent flows (Fig.3.5) results from the different be-

haviour of the oscillating part of the shear stress in both flows. The

oscillating parts of the laminar and turbulent velocity profiles at high

values oft are vaguely similar, suggesting that a proper use of an eddy

viscosity model may provide a qualitative answer for the behaviour of

the oscillating turbulent flow, including In particular the vastly dif-

ferent radial distrubution of the phase. The eddy viscosity model has

to be modified in order to provide a qualitatively correct description

of the time dependent turbulent flow.
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The suggested expression of the kinematic eddy viscosity for the

time dependent portion of the flow is based on the steady flow model of

Van-Driest (195) with the correction of the wake function of Coles

(1954), as proposed by Yahalom-Dimant (1974). The kinematic eddy vis-

cosity 0 for steady flow is given by

0

(r/aru.o(r) = (ru. 4,5

The velocity gradient au/ar is composed of two parts, the first repre-

sented by Van-Driest model:

auI  (r/R)u./v

ar = +r1+4k2 R-r - 2 r (R-r)u. 4.6
--- u. - (1-exp(- - ))]

vA+

for which the empirical constants are: A+=26; k=0.4; and the second

part is the wake correction for the central region of the pipe:

au2  1Tr
= _1- [l-exp(-2Ru./vA+)sin(r(1- ).7

where the additional empirical constant I was chosen to be 110.02.

The eddy viscosity for the time dependent part of the flow is dif-

ferent from that for the steady flow. Following Maruyama (1974) and

using the Prandtl's mixing length approach, the expressions for the

shear stress and the eddy viscosity are:

T a PC au 14u

r ; C p12 F 4.
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wheret is tae mixing length. ntroaucing tae decomposition for the

steady anc time dependent parts of the phase averagea velocity u=1+u>,

suostituting it into &q.(4.o), and neglecting terms of second order

yields:

T- ) t) Ptu>r r )  + 22r a r 4.9

thus implying for the eddy viscosity of the oscillating flow c

l 2pt 2 a = 2E 3 T 4 9 a

r 0o F -~~a)

The simple model of Prandtl which uses a constant length scale, gives

for the time aependent part of the shear stress an eddy exchange coeffi-

cient 9 which is twice the conventional, steady eddy viscosity.

For a more complex model, like the one given in equations (4.5)

through (4.7), the relation between o and c is not as simple. In

order to obtain the eddy viscosity which represents the dependence of

the shear stress on the velocity profile, the radial distributions of

the velocity gradient and of the shear stress was calculated for two

slightly different values of the friction velocity u. from equations

(4.6) and (4.7). The eddy viscosity for the oscillating flow was then

calculated following (4. 9a) from the equation:

(r/R)Au,4

E 1 / r).
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Fig.4.5 presents so calculated radial distrioution of the oscillating

cdI(.y viscosity as compared to tne steady one.

It was tacitly assumed in this derivation, that the shear stress is

corresponding to the instantaneous value of the local velocity gradient,

irrelevant to the rate of change of the phase-averaged flow. The care-

full examination of the experimental data however reveals, that this is

not always true. From the Eq.(4.2) and the definition of the eddy vis-

cosity one obtaines

9<u>
(C-V) - = -<u'v'> 4. 11

The phase angle of the Reynolds stresses is thus related to the velocity

gradient a<u>/ar. With the radial distribution of both amplitude u (r)

and phase angle of velocity oscillations u(r) Known, the time depen-

dent velocity gradient is:

3<u> Bu1 (r) au(r) i(wt+* u (r))
- -[ r---- + iu, (r) ---- ]e 4.12

The phase angle of a<u)/3r may thus be calculated from Sq.(4. 12). The

experimentally observed radial dependenoies of uI(r) and 4u(r), as pre-

sented in Section 3.2, are very slowly varying functions of r with the

exception of the wall area, thus the differentiation of these curves

will inevitably cause a very large experimental error. Consequently,

the accurate calculation of the eddy viscosity for the oscillating part

of the flow from the experimentally measured values of <T > and 3 (u>/3r
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F-rs iapossiole in practice.

fnere exists, nowever, a point, at whicn the pnase lag *u(r) at-

tains a ininimum, so that 3 u(r)/ar=O at this radial position, and the

pnase angles of D<u>/Dr and <u> are identical (Eq.(4.12)). The experi-

mental data of Section 3.3.2 show a difference In phases between <u> and

<u'v'> at this, as well as at other radial positions, it follows tnere-

fore from Lq.(4.11), that the turbulent part of the eddy viscosity for

the time dependent flow has to be a complex function which introduces a

phase shift between a<u>/3r and <u'v'>.

The complex nature of the eddy viscosity for the oscillating flow

can oe related to the finite relaxation time in turbulent flows (Nee and

Kovasznay (19og), Narasimha and Praohu (1972)). The concept of the re-

laxation time refers to the time period necessary for the turbulent

structure to adjust itself to a step-function change in the mean flow.

hee and Kovasznay and Prabhu and Narasimha (1972) proposed model equa-

tions for calculating the shear stress in a flow with non-stationary

mean values, based on the diffusion equation. A different aproach will

be taicen here. The equation relating the shear stress to velocity gra-

dient is modified in order to include a responce time of the Reynolds

stress:

3<u> a<ulvl>
<u'v'> . (C -v) -F- - -' 4.13

The second term on the right hand side of the Eq.(4.13) represents the
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"inertia" of the Reynolds stress, whicn nay be large whenever the

changes in <u'v'> are rapid in comparison with characteristic time e ,

but vanishes for infinitely slow processes. Substituting into the

4q.(4.13) the presentation (1.3) for the time dependent part of the Rey-

nolds stress <u'v'>=(u'v)Iexp(iw t+ ur ), one obtains:

C I-V D<u> 1-V -iarctg(U) 9<u>
<U'v'> = +-iw - = - e 4.14

which gives an expression for the oscillating eddy viscosity:

C1"V -iarctg(wO)V1 + - e 4 .15

/l+w2e2

Eq.(4.15) indicates that the argument of the complex eddy viscosi-

ty, as well as its' absolute value are frequency dependent. At high

frequencies relative to the relaxation time e ( we>>I) the absolute

value of the eddy viscosity for the oscillating flow decreases, and the

Reynolds stresses become independent of the phase angle. Thus, the tur-

bulence is "frozen" and depends on the mean flow only. The pulsations

are governed by the molecular viscosity V only, and are in this sense

laminar, while the mean flow is fully turbulent.

As mentioned earlier, the phase difference between <u'v'> and

a<u>/ Dr is known accurately at one radial position only, where the

phase of the velocity gradient equals to the phase of the velocity it-

self. The experimentally measured *u at T=1.34 see and U1/Ua20$ at-
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tains ainimu, at r/K=0.72 (Fig.3.1b), and the phase difference between

the velocity and the Reynolds stress is at this radial position 300

(r'ig.3.21). Tne relaxation time 0 , obtained from the Eq.(4.15) is

therefore 0 =( w/6)/(2 n/T)=0.12 see. Although the relaxation time

should in general depend on the radial position, it is convenient to as-

sume it to be constant across the pipe. The relaxation time therefore

is a universal constant for a given mean Reynolds number. Warasi1ha and

Prahbu (1972) used a similar approach to calculate the influence of the

finite relaxation time on the development of the turbulent wake in res-

ponce to a steep change in pressure gradient. Neglecting the dependence

of the relaxation time on the transverse coordinate proved in their case

to have no significant effect on the results of the calculations nor on

the agreement with experimental results.

Following equation (4.15), one may define a critical frequency of

pulsations f = w o/2 v- z1/o =1.3 lz. At w < wor the modulus of I is

practically independent of frequency and equals to the value of an eddy

exchange coefficient for very slow pilsations. At 'wo the osoillat-cr

ing eddy viscosity decreases to 1//2 of its value at (Ay+ 0. When w >i/e,

and (we )2w1, JZ,1/w , and thus the amplitude of oscillations in

shear stress decreases rapidly with increasing frequenoy for a given

value of 3<u>/ 8r. The corresponding critical period of the pulsations

is in this case Tcr-1/f or0.75 sec. For the turbulent structure to be-

come frozen, i.e. for the oscillating eddy viscosity to vanish, the

frequency of pulsations has to be much higher than for' as may be de-

duced from Eq.(4.15). On the other hand, even at f<fcr the oscillating
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eddy viscosity still introduces a significant phase angle between <u'v'>

anJ a<u>/ Dr, thus influencing on the total force balance in the oscil-

lating part of the flow.

Ramaparian and Tu (1960) used a criterion, proposed by Rao et al

(1971); Laufer and Badri Narayanan (1971) for the cnaracteristic res-

ponce time in a turbulent boundary layer UO / 6=5, in order to distin-

guish slow pulsations from rapid ones. The adaptation of the criterion

to the pipe flow required that the boundary layer thickness is replaced

by a diameter D of the pipe. The direct adaptation of results obtained

in the boundary layer to a pipe flow seems questionable, and the radius

is probably a better substitute for 6, than D. Still, the use of the

aoovementioned criterion for the flow parameters, used in the present

invesigation, gives a characteristic time 0=5D/U=O.Oo sea, which is in

fair agreement whitnin an order of magnitude with the estimated value of

e=0.12 sec mentioned earlier. Ramaparian and Tu concluded that the

turbulent structure is independent of the phase angle at f- fcr' yet in

the present investigation experimental results and model considerations

indicate, that much higher frequencies are necessary in order to

"freeze" the turbulence. The characteristic time 0, when calculated

from the criterion e=5D/U, decreases with increasing Re, thus the phase

shift between the velocity and the turbulent structure has to decrease

with increasing time-mean bulk velocity. The Reynolds number dependence

of the phase shift between <u> and /<u'2> (Fig.3.15 b ) confirms this con-

clusion.
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It is intersting to note that the empirical relation of Mizushina

et al (1973 a ) (Eq.(1.12) leads in our case to the same value of T,,=0.75

sec. These authors also referred to the paper of Rao et al (1971);

their conclusion is however opposite to the results ootalned In the pre-

sent work: Mizushina et al found that for T>T the pulsations do notcr

effect the turbulent structure, and for very rapid pulsations (T<Tcr)

turoulent intensities become phase dependent. This conclusion contrad-

icts to the physical sense and experimental results and seems to be

error.

The eddy viscosity calculated from the Sqs.(4.5) to (4.7), (4.10)

and (4.15), was substituted into the Navier-Stokes equation for the os-

cillatory part of the flow to give:

iw<u>= - a (r>(r) T ) 4. 16

with boundary conditions:

3<u> l=
0 <U>

= r=O = 0r=R 
= 0

Eq.(4.16) was solved numerically using an implicit finite difference

scheme by the Gaussian elimination method (Chow (1979), p.74).

The results of the calculations are presented in Fig.4.6, showing

the radial distribution of the amplitudes and phase angles of the oscil-

lations in velocity and shear stress. The calculations were performed

,N,
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cr ican he=40O and T=1.0 see. A qualitative agreecent with the exper-

iental results was acnieved in this way. Tne calculated phase lag of

tne vclocity ociiina tne pressure behaves as the experimentally ooserved.

Inc calculated angle sligntly decreases with the increasing distance

froo the center line, then increases near the wall. it should be noted

that tae efforts to use the real value of the oscillating eddy viscosity

resulted in the calculated radial distribution of # which resembled

*u in laminar flow, and decreased monotonically with increasing r1R.

In the immediate proximity of the wall the rate of change of
Ou with radius decreases sharply. The comparison of the * which was

calculated from the experimental data according to Eq.(4.4) and shown in

Fig.4.4, with Ou at the same large radial location (shown in Fig.3.5)

reveals, that the phase difference between them is small. The turbulent

(complex) part of the eddy viscosity being negligiole in this region,

the assumption can be made that<T> has to be in phase with D<u>/ ar,

tnus the phase angle gradient a3u(r)/ 3r has to be small near the wall

as it follows from Eq.(4.12). The behaviour of u(r) in the vicinity

of wall calculated numerically seems therefore reasonable, but no direct

experimental data is available in this region.

The calculated values of both Ou (r) and u1 (r) differ from the ex-

perimentally measured angles, implying that the theoretical model is not

sopnisticated enough to provide an exact balance oetween viscous, iner-

tia and pressure forces, and perhaps is not valid for the low Reynolds

number used.
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CHAPTER 5

CONCLUSIONS

The pulsating flow in pipe was investigated experimentally.

Measurments were carried out in fully developed laminar and turbulent

flows consecutively while all other flow parameters were kept constant;

enabling a detailed comparison between the laminar and turbulent flows

at otherwise identical conditions. Most measurments were talcen at a

mean Re=4000, for the periods of pulsations from 0.5 sec to 5 sec cor-

responding to a dimensionless frequency parameter 5<=R/7<15.

By considering the fundamental forcing frequency only, the regular

time-dependent component of the flow parameters is represented by the

radial distributions of amplitude and phase-angle of the oscillations.

it seems, however, interesting and possible to expand the analysis to

include higher harmonics, which are important whenever turbulence is

considered. The restriction of the analysis to the fundamental frequen-

cy made it possible to represent the balance between the inertia, pres-

sure and shear forces in pulsating flow by a vector triangle. The vec-

tor approach is helpful in understanding the physioal process at hand.

The time mean properties of the flow were found to be practically

indpendent of pulsations in both laminar and turbulent regimes. A small

-- ~ 0-.4t ,.1 _. - ' - '
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increase in tie turoulent energy at the nigr. frequenzy cna of tne spec-

tr,. was oos-rvrd at relatively aigh amplituoes or forcin;. ao accumu-

lation of the turbulent energy at, or near the frequency of pulsations

was ooserved in tnis investigation.

ine theoretical analysis of' the fully developed, laminar, pulsating

pipe flow provides a good estimate for the measured quantities. The

theory describing the laminar pulsating flow in the entrance region of

the pipe (Atabek and Cheng (1961)) which uses a linear approximation for

the inertial term in equation of motion underestimates the importance of

tnis region in comparison with tne experimental results.

The dependence of the bulk velocity oscillations on pressure was

found to oe similar in laninar and turbulent pulsating flows. The am-

plitude of the bulk velocity pulsations, depends linearly on the pres-

sure in both flow-regimes; so that equal amplitudes of pressure pulsa-

tions, result in nearly identical amplitudes of velocity regardless of

the flow regime. The pnase-lag of the bulk velocity relative to the

pressure is different in laminar and in turbulent flows, the phase lag

in the turbulent flow being usually notably smaller than in the corres-

ponding laminar flow. The radial dependence of tne amplitude of the

velocity oscillations was also found to be different in laminar and tur-

bulent flows, in laminar flow, the maximum amplitude of the velocity

oscillations occurs in the Stokes layer, resulting in an t-like shape of

velocity profile. In the turbulent flow the amplitude of velocity os-

cillations decreases monotonically from the center towards tne wall pro-
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ided that tn: il ccous sublayer is thinner than the btokes layer. At

i~in frequ 'ncy ol forcin3 in tne turoulent flo,. re-ije, wnen tne StoKes

layer is thinner tr,:i tne viscous sublayer, tne ra'ial distrioution of

tne amplitudes of tne velocity pulsations resmoles tne distribution 0o-

served in the laminar flow. The radial distrioution of the phase angle

*u changes significantly when the flow regime changes from laminar to

turbulent, in the laminar flow, *u is approximately 90° in the central
region of the pipe at all frequencies considered, and decreases to about

450 near the wall. in turbulent flow, *u is smaller in the center than

in the corresponding laminar case, and increases with increasing fre-

quency. At all frequencies considered, the phase angle, u, in turbu-

lent flow is higher near the wall of the pipe than near the center, in

contrast to the distribution of u in the laminar flow.

The turbulent structure in pulsating pipe flow was found to be

phase dependent. The amplitude of the oscillations of longitudinal and

radial velocity fluctuations, as well as the Reynolds stress, correspond

roughly to the amplitude of pulsations of the bulic velocity. The angle

between the intensity of the longitudinal component of the velocity

fluctuations and the pressure attaines a minimum in the region where

most turbulent energy is produced and increases towards the center line.

The radial distribution of phase of the Reynolds stresses resembled that

of the longitudinal velocity fluctuations, but the minimum is less pro-

nounoed. The phase lag of the radial velocity fluctuations is uniform

acoross the pipe, and approximately equals to the phase angle of longl-

tudinal velocity fluctuations in the center of the pipe. The phase lag
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of the turbulent quantities behind the velocity of forcing increases

with increasing frequency from zero to about 900. At high frequencies,

the turbulent activity reduces to a minimum whenever the acceleration Is

high, the phase lag between the two leads to the suggestion that the

turbulent structure needs time to accomodate itself to the everchanging

mean flow, thus revealing properties of "memory". Measurments of phase

between Reynolds stress and velocity oscillations at high frequency, en-

abled evaluation of a characteristic responce-time of a turbulent struc-

ture. This characteristic time was used in developing an eddy viscosity

model for the oscillating part of the turbulent pulsating pipe flow.

The model gave an expression for a complex eddy viscosity for the

time-dependent component of the flow, for which both modulus and argu-

ment are frequency dependent. The argument of the eddy viscosity

differs from zero at relatively low frequencies, and tends to 900 with

decreasing period of pulsations. The modulus of the oscillating eddy

viscosity is independent of frequency whenever the period of pulsations

is longer than the relaxation time of the turbulence, but decreases at

higher frequencies. The relaxation time of the turbulent structure was

evaluated from a single point.

The dependence of the eddy viscosity on the frequency leads to the

suggestion that for a sufficiently high frequencies the modulus of the

eddy viscosity vanishes, and the turbulent structure becomes independent

of forting. The turbulence therefore becomes "frozen", and the oscil-

lating part of the flow may be considered laminar although the mean flow

is turbulent. These high frequencies could not be achieved in the pro-
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sent cxperimental setup.

flow analysis notwithstanding, the responce of tne facility, con-

sisting of a valvless piston pump, a large settling chamber and straight

smooth pipe, to a periodic change in the volume of the settling chamber,

was analysed theoretically ind experimentally. it was found that for a

given amplitude of oscillations in volume the resulting pressure oscil-

lations depend on frequency. A maximum responce of the system to oscil-

lations in volume occurs in both laminar and turbulent flows at approxi-

mately Identical frequencies. The resonance type of behaviour of the

pressure oscillations is caused by the phase relation between the pulsa-

tions in the flow rate and pressure for the specific facility. The in-

fluence of the finite sound velocity on the linearity of the pressure

distribution along the pipe was investigated as well and a qualitative

criterion was obtained for the range of frequencies at which a fully de-

veloped flow may be regarded to be independent of the axial coordinate.
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Fig.2.1 !he experisaental facility
Fig.2.2 Ineoretically calculated a = a ( ) and Oq
L'ig.2., 'Ineoretically calculated p --p (%~) and Q *Q(
Fig.2.3 Experimentally measured dependence pI=p z 1 12a

in laminar and tuoulent flows
Fig.2.4 £ne calculated phase difference between the volumetric

velocity oscillations at both ends of the pipe
Fig.2.5 ±ne experimentally measured dependence t-f(Re);

insert: data oy Kovazsnay
Fig.2.b £ne calibration line u=u(f)
Fig.3.1 Time-mean velocity profile

a)laminar flow
b)turbulent flow

Fig.3.2 Phase averaged pressure and velocities
Fig.3.3 measured oscillating laminar velocity profiles compared

with tne calculated according to Ucnida
a) T:O.76 sec a=11.6)
b) T=2.4 sec (a=6.7)

Fig.3.4 Measured turbulent oscillating velocity profiles
a) T=O.70 sec, Re=4000
b) T=2.4 sec, Re=4000
a) T=O.56 sec, Re=2900; solid line-laminar calculated
profiles

Fig.3.5 Radial distribution of *u in laminar and turbulent
flows

Fig.3.6 The amplitude dependence of . in the turbulent flow,
compared with . calculated for the laminar flow

Fig.3.7 The dependence of 4. on Re
Fig.3.8 The radial distributon of u in laminar

and turbulent flows
Fig.3.9 The phase shift between pressure oscillations

b at x/D=O and x/D=400
Fig.3.9 The ratio of pressure pulsations amplitudes

at x/D=O and x/D-400
Fig.3.10 The dependence between UI and pI in laminar

and turbulent flows
Fig.3.11 Single period, measured by pressure transducer and

and x-wire, compared with phase-averaged values
Fig.3.12 DC-filterd single period, measured by rake

of 9 hot-wires
Fig.3.13 The radial distribution of the RMS values of velocity

fluctuations
a) axial velocity
b) radial velocity

Fig.3.14 The phase averaged values of pressure and RMS of axial
and radial velocity fluctuations

Fig.3.15 The comparison between the phase angles of WS values
of velocity oscillations and $u
a) frequency dependence
b)Reynolds number dependence

Fig.3.16 The comparison between the phase angles of (u>,
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kuve , and ,<V' >
Fig.3. 17 The radal distribution of tne amplitude of oscillations

in ,<u'c> for different frequencies
Fig.3.1b The radial distribution of tne amplitude of oscillations

in /u'7> for different amplitudes of forcing
Fig.3.19 The radial distribution of time-mean Reynolds stress
Fig.3.20 The radial distribution of the amplitude of <u'v'>
iFig.3.21 The radial distribution of the phase angle of <u'v'>
Fig.3.22 The power spectrum of turbulent fluctuations of axial

velocity
a) without pulsations
b) T=1.34 see, U1/u'=20
c) T=1.34 see, U1/U=357

Fig.3.23 The power spectrum of turbulent velocity fluctuations
a) axial and radial velocities, r/R=O
b) axial and radial velocities, r/R=0.73
c) axial velocity at r/R=O in tne coordinates
log(c(f)'f) vs. log(f)
d) radial velocity at r/R=O in tne coordinates
log(c(f)*f) vs. log(f)

Fig.3.24 Ie anort time spectra at T=1.34 sec

b) U 1AY=135 n
C) U,/fi=13.5) in the coordinates log(c(f)#f) vs. log(f)
d) U /U0=35% in the coordinates log(c(f)df) vs. log(f)

Fig.3.25 The dissipation spectra corresponding to the power
spectra shown in Fig.3.2 3a

Fig.3.26 The short time dissipation spectra corEesponding
to the power spectra shown in Fig.3.24

Fig.3.27 The behavior of the dissipation frequency f,
a) The radial distribution of time-mean f

b) The radial distribution of the amplituge of <f,>
c) The radial distribution of the phase angle of ff>

Fig.4.1 The calculated amplitude of oscillations in the shear
stress compared to the amplitude of the neynolds stress

Fig.4.2 The calculated amplitude of <r > for different
frequencies of forcing

Fig.4.3 The radial dependence of $8 for different amplitudes
of forcing at T=1.34 sec

Fig.4.4 The radial dependence of OT for different frequencies
of forcing

Fig.4.5 The comparison between the steady C and oscillating
t eddy viscosity 0

Fig.4.6 ThJ calculated distribution of u1(r) and 0 u(r)
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